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ABSTRACT

Modeling the Minimum Energy State of the

Earth’s Magnetotail
by

Markus S. Sorrells, Master of Science
Utah State University, 1993
Major Professor: Dr. W. Farrell Edwards
Department: Physics

For a system that remains in thermodynamic equilibrium, stable equilibria are determined by
minimizing an appropriate potential energy function such as the Gibb’s free energy. However,
when a system does not remain in thermodynamic equilibrium (i.e. a radiating system), one
cannot use a potential function to derive a state of stable equilibrium. If we assume this is the
case for the earth’s magnetotail, then we must come up with another method to determine stable
equilibrium. We conjecture that this will be a minimum total energy.

By combining Poynting’s theorem with the Lorentz force equation and Maxwell’s equations,
one can account for the energy advections into and out of a system containing a fully ionized
plasma, as well as for the energy fluctuations caused by changing electric and magnetic fields.
By minimizing the total energy equation representing an idealized model of the earth’s
magnetotail, one should be able to calculate its stable equilibrium state.

Although the idealized minimum energy model presented in this paper depicts many trends
observed in the earth’s magnetotail, this thesis concludes that more modifications are needed

before it becomes a useful tool for analyzing the earth’s magnetotail. (140 pages)




CHAPTER 1

INTRODUCTION

Earth’s Magnetotail

This thesis attempts to develop a model to determine if a minimum energy equilibrium state
establishes itsclf within the earth’s magnetotail. During quiet conditions, the earth’s magnetotail
receives and stores energy from the solar wind. At periodic intervals, the magnetotail releases
all or a portion of this stored energy into the earth’s ionosphere and interplanetary space in the
form of geomagnetic storms, substorms, and plasmoid ejections. At this point in time, no one is
quite certain how or why the magnetotail periodically releases its energy although there are a
couple of theories available. One theory suggests that the solar wind may deposit energy into
the magnetotail at a rate faster than the magnetotail can absorb it, causing the excess energy to
be discarded during the energy storage cycle. Another theory states that the magnetotail has a
finite energy storage capacity and when this critical level is reached, some unknown triggering
mechanism causes the magnetotail to release its energy. Whatever the case, this energy release
is probably the result of the magnetotail trying to establish an equilibrium state. It seems
reasonable that the magnetotail would ultimately be trying to reach an equilibrium state having
the lowest possible total energy. This thesis attempts to find out if the magnetotail releases
enough of its energy at one time to ever reach this minimum total energy state.

The minimum energy model developed in this thesis calculates the minimum energy profiles of
key parameters of the magnetotail such as magnetic field strength, ion and electron number
densities, temperatures, and bulk flow velocities. By comparing the model's profiles with those
observed in the magnetotail at the end of an energy release cycle, one should be able to
ascertain whether the model works or not. Certain insights to the earth’s magnetotail energy
cycle may be gained if the model adequately describes the above situation. Before getting into

the minimum energy model, a brief background into the magnetospheric/tail physics and




structure will be discussed in this chapter.
Magnetospheric/tail Models

Prior to the advent of space exploration, scientists had to rely solely on ground measurements
to observe and come up with theories to explain the structure of the earth’s magnetic field. As a
result, early scientists pictured the earth’'s magnetic field as a perfect magnetic dipole (Fig. 1).

In 1931, Chapman and Ferraro brought the acceptance of a solar wind into the scientific
community (Akasofu, 1981). Solar wind plasma originates from the sun's corona and flows
radially outward at "supersonic® speeds that vary between 300 to 800 kilometers per second
(Gosling, 1984). As the solar wind reaches the earth, it has a typical density of about 10
particles per cubic centimeter (Gosling, 1984) as compared to the 3 x 1019 particles per cubic
centimeter found in the atmosphere at the earth’s surface. During solar quiet times, the energy

of the solar wind particles is normally a few eVs.

Closed Magnetic Dipote

FIG. 1. The original undisturbed model with magnetic field lines extending into a vacuum [Gosling,
1984).




Scientists had to take into account the effects of the solar wind flow against the earth’s
magnetic field. They came up with what is now called the closed magnetospheric model in
which magnetic field lines left one hemisphere of the earth and returned to the other
hemisphere and were modified by the solar wind flow into the shape depicted in Fig. 2.

This mode] worked relatively well for describing some of the magnetospheric processes that
were observed before the advent of space exploration. In 1955, a British geophysicist by the
name of James W. Dungey attempted to apply hydromagnetic theory to calculate and determine
the shape of the magnetotail (Carovillano et al., 1967). As it turned out, his calculations worked
fairly well on the dayside portion of the magnetotail but it predicted that the magnetotail would
close off relatively close behind the earth with something like a Mach angle. Of course current
observations do not support this theory. As more magnetospheric processes were observed with
the use of satellites, it became apparent that the closed magnetospheric model was not sufficient.
For example, it could not explain how solar wind particles gained relatively easy access to the
earth’s polar regions nor could it explain the sharp outer boundary layer of the plasma sheet

which separated the anti-parallel magnetic field lines of the magnetotail.

Closed WMagnetosphere

FIG. 2. A closed magnetospheric model in which the solar wind distorts the earth's magnetic field.
All the earth’s magnetic lines start and end on the earth. (For simplicity, the tilt of the earth’s axis
is not shown) [Gosling, 1984].
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In the early 1960’s scientists discovered that the solar wind contained a magnetic field. Since

the sun has a dipolar magnetic structure, the solar wind carries "frozen" remnants of the sun’s
magnetic field within its flow. This *frozen in" magnetic field is known as the Interplanetary
Magnetic Field or IMF. Due to the dipole nature of the sun, the IMF is either a sunward or anti-
sunward orientation. A heliomagnetic current sheet separates these oppositely aligned magnetic
fields, which prevents them from making contact and mutually annihilating one other. Due to
the rotation of the sun and the current sheet’s 7° inclination (Tascione, 1988) to the solar
rotational equator, the current sheet incurs a wavy structure depicted in Fig. 3. Because of the
wavy nature of this current, the earth’s orbit passes through it at least twice during each solar
rotation. As the earth passes through this structure, the IMF will either have a northern or
southern component to it depending on whether the earth is above or below the heliomagnetic
current sheet. The acceptance of a magnetic field (or IMF) in the solar wind led scientists to
develop an open magnetospheric model. In this model, some of the magnetic field lines flow

from the earth out into interplanetary space instead of flowing back towards the earth at the

EARTH
.

EARTH ORBIT
ABOVE ——
BELOW ----

FIG. 3. Wavy structure of the heliomagnetic current sheet due to the current sheet’s inclination to
the sun’s rotational equator [after National Research Council, 1981].




opposite hemisphere (Fig. 4). This model is able to explain many of the phenomena observed
within the magnetosphere/tail that the closed model could not, such as how solar wind plasma
and energy are able to move into and through the magnetosphere (Gosling, 1984). In fact, this
model can also attempt to explain the dependence of the earth’s magnetic activity on the IMF.

When the IMF points southward, as seen in Fig. 5(a), its magnetic field can easily merge with
the earth’s own field. According to the modei, magnetic merging is one of the primary processes
by which the solar wind transfers a portion of its mass/energy to the earth’s magnetosphere/tail.
As a result, the earth’s magnetosphere/tail is relatively active during southward IMF.

However, magnetic merging occurs less often when the IMF points northward (Fig. S(b)).
This means the amount of solar wind mass/energy transferred into the earth's
magnetosphere/tail is reduced. As a result, the earth’s magnetosphere/tail experiences less

geomagnetic activity when the IMF is pointing northward rather than southward.

Interplanetary Direcrion of

‘(/ Field Plasma Fiow
e

TN

%

Terrestrial
Field

Open Magner0iphere

FIG. 4. An open magnetospheric model in which the terrestrial and interplanetary field lines
connect. (Tilt of the earth’s axis is not shown) [Gosling, 1984].
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FIG. 5. The interaction of the earth’s dipole magnetic field with (a) southern component of the IMF
and (b) the northern component of the IMF.

Even with all its good points, the open magnetospheric model does not explain every situation
within the magnetosphere/tail so most scientists today use a combination of the open and closed

models to describe magnetospheric processes.
Magnetospheric/tail Physics

The "supersonic” plasma of the solar wind encounters the presence of the earth’s
magnetosphere at a boundary referred to as the "bow shock" (Fig. 6). This encounter is
analogous to a shock wave created by an object moving at supersonic speeds through a fluid
medium. The region directly behind the bow shock is called the "magnetosheath” and forms a
physical boundary between the solar plasma at the bow shock and the magnetospheric plasma at
the magnetopause. As the solar wind particles continue to flow past the earth’s northward
pointing magnetic field, they are acted upon by the Lorentz force F = ¢ (¥ x B ) which

deflects the positive ions towards the dusk side of the earth and the negative electrons towards




INTERPLANETARY
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FIG. 6. Diagram showing the structure of the earth’s magnetosphere system [National Research
Council, 1981].

the dawn side (Fig. 7). This force sets up a magnetopause current that follows the path taken
by the positive ions and flows around the outside of the magnetosphere and eventually merges
with the magnetotail current, which flows around the exterior of the magnetotail from dusk to
dawn as depicted in Fig. 8. The magnetotail current then merges with the current or plasma
sheet current (Fig. 9), which flows from dawn to dusk in the interior of the magnetotail. The

magnetotail and plasma sheet currents are enhanced by the earth’s magnetic field, which points
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FIG. 7. Schematic showing how the Lorentz force creates the magnetopause current [from
McPherron, 1991).

FIG. 8. Flow patterns of the two principal current systems which determine the configuration of the
magnetosphere/tail [adapted after Axford, 1965].

sunward in the northern half of the magnetotail and anti-sunward in the southern half (Fig. 6).
The ring current, which constitutes the earthward most regions of the plasma sheet, is due to
drift of charged particles across the earth’s magnetic field gradient. The drifts are charge
dependent so that positive particles drift westward and negative particles drift eastward




H.agnetcsphere
boundary

FIG. 9. Cross section of the earth's magnetotail showing the primary directions of the magnetopause
and crosstail currents [following Axford et al., 1965].

(Fig. 10) producing a net westward current (Williams, 1987).

The field align currents (FACs), also known as Birkeland currents, connect the earth’s
ionosphere to the magnetosphere and interplanetary space. The net current usually flows into
the ionosphere at the morning sector, across the polar cap (Auroral electrojet), and out of the

asphere at the evening sector (Fig. 11). The magnetotail forms when the earth's magnetic
field lines are stretched, as far as 1000 earth radii or R, downstream by the solar wind. The
process starts when the IMF and the earth’s magnetic field merge and connect on the sunward
side of the earth near the magnetopause. The solar wind is then able to drag the interconnected
magnetic field lines from the dayside portion of the magnetosphere down the magnetotail to the
point where they reconnect (Fig. 12) (Sibeck, 1990).

As stated above, hydromagnetic theory was not able to explain the long nature of the
magnetotail. The problem was that it assumed the solar wind slid smoothly along the boundary
of the magnetotail without agitating it. Scientists soon concluded that there had to be some
force exerted on the tail to allow it to be dragged out for such a distance. One explanation is

that there must be a pressure p; within the tail region which tends to push out with just enough
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FIG. 10. A view of the dayside plasmasphere showing the creation of a westward ring current by
particle drift [from McPherron, 1991]."

Field-aligned
currents

Inner edge
of tail current

FIG. 11. Field aligned currents {from Clauer and McPherron, 1974).
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Solar wind

FIG. 12. Schematic showing magnetic merging process [Aeronomy Lecture, 1992].

pressure to equal the inward magnetic tension (or pressure) of the tail (Carovillano et al., 1967).

This effect is expressed in Eq. (1).

BI
Pl = -8—'- . (1)

However, there is also a pressure outside the tail py, which combines with the inward magnetic
tension of the tail to push against the internal pressure. Therefore, in order for a transverse
equilibrium condition to exist, the total pressure inside the tail p; must balance both the inward
magnetic tension of the tail plus the pressure outside the tail p5. This pressure balance is

expressed in Eq. (2).

2
P, = & +P,. @
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Enhanced mixing of the solar wind plasma with the magnetopause boundary is also used to
explain the magnetosphere’s long tail. It is thought that this mixing could be due to surface
instabilities on the magnetotail boundary or other unknown mechanisms. Whatever the cause,
this mixing would allow particles from the solar wind to penetrate into the tail at large
distances. The inertia of this penetration could then be the mechanism that stretches the
magnetotail out to the long distances that we observe. The solar wind penetration can also be
the source of the tension along the magnetic field lines. Calculations have shown that only
1/10th of the total solar wind momentum is required to produce the necessary shape observed
and tension required within the earth’s magnetotail (Carovillano et al., 1967). It is these
calculations which have caused the latter explanation to be widely accepted.

In order for solar wind plasma to interact within the earth’s magnetic field, it must first get
into the magnetospheric/tail system. One way this can happen is through the magnetic merging
of the earth’s magnetic field with an IMF as described above (Tascione, 1988). As the
interconnected magnetic fields are pushed along by the solar wind, some of the solar wind
particles are dragged along. When the magnetic field lines reconnect, a portion of the field line
gets propelled earthward by the inward tension of the magnetic field, thereby injecting some of
the trapped solar wind particles into the earth’s magnetosphere (Fig. 12).

Solar wind particles can also get into the earth’s magnetotail through diffusion across the
magnetosheath boundary layer. A portion of the solar wind particles get through the bow shock
and are able to diffuse through the magnetopause as they flow along it. Particles flowing across
the top and bottom of the magnetosphere must travel through the magnetotail’s lobes before
they reach the plasma sheet (Fig. 13). Particles flowing along the equatorial region of the
magnetosphere, also known as the Low-Latitude Boundary Layer (LLBL), are able to diffuse
through the magnetopause and enter the plasma sheet from the sides (Fig. 14) (Lundin et al.,

1991). Once the solar wind plasma is inside the magnetosphere/tail system, it initially flows
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Lobe/Plasma Mantle Source

FIG. 13. Diagram showing access of solar wind particles through the northern and southem
portions of the magnetosphere [Pilipp and Morfil, 1978, Cowley and Southwood, 1980].

Low-Latitude Boundary Layer Source

FIG. 14. Access through the LLBL [Heikkila, 1982, Eastman et al., 1985].
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FIG. 15. Sketch of the equatorial section of the earth’s magnetosphere looking from above the north
pole showing idealized plasma flow [after Axford, 1964].
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anti-sunward in the magnetosheath. Most of the plasma within the magnetosphere moves into
the plasma sheet located in the equatorial region of the magnetotail. Once in the plasma sheet,
the plasma flow is generally sunward (Fig. 15) from the earthward side of the magnetic field
reconnection point (about 100 R,). The plasma flow within the plasma sheet is due to either
magnetic field line reconnections or the inward solar wind pressure on the earth’s magnetic
field.

As the plasma begins to flow earthward from the magnetic field reconnection site, several
things happen to it. First, the plasma again experiences the Lorentz force F = ¢ (v x B ),
which forces the positive ions to flow towards the dawnside of the magnetotail and the negative
electrons to flow towards the duskside. The net effect of this action is to set up an electric field
across the magnetotail which points from dawn to dusk (Fig. 16). Another way of looking at
this is, since the plasma can be considered a collisionless medium, its motion sets up an electric

field which satisfies the equation E = - ¥ x B,

Since this plasma can be considered collisionless, it also experiences an B x B (electric field
vector crossed with the magnetic field vector) drift (Hones, 1986). Near the earthward side of
the reconnection site, the earth’s magnetic field has a strong northerly component to it. As a
result, the B x B drift directs the plasma towards the earth (Fig. 17). Midway between the
reconnection site and the earth, the B x B drift forces the plasma towards the equatorial
regions of the magnetotail due to the anti-parallel orientation of earth’s magnetic fields at this
point (Fig. 18). As a result of this action, the bulk of the magnetotail’s plasma and energy is
tied up within a relatively thin equatorial region called the central plasma sheet. This is where

key processes such as energy storage and dissipation usually take place.




FIG. 16. Schematic showing the electric field set up as a result of the Lorentz force and
B=-vxB.

FIG. 17. Schematic showing the earthward B x B drift.

15
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MAGNBTOSPHERIC BCLIPTIC PLANE

FIG. 18. Schematic showing the equatorial E x B drift.

Magnetotail Energy Storage and Dissipation Mechanisms

The solar wind/magnetospheric interaction basically converts the solar wind’s kinetic energy
into the electrical and magnetic energies observed within the magnetosphere/tail. The solar
wind puts energy into the earth’s magnetosphere/tail system at a approximate rate of 1019
ergs/sec (Lanzerotti and Krimigis, 1985). It appears that the earth’s magnetospheric system has
two models (Fig. 19) to describe the way it processes the energy it receives from the solar wind.
One way is by direct dissipation of the solar wind energy into the earth’s upper atmosphere
where it manifests itself in the form of auroral storms (i.e. northern lights). This process is
called the direct driven model and is depicted in Fig. 19(a) (Akasofu, 1987).

The other way the magnetospheric system handles the solar wind’s energy is by storing it and
relessing it periodically. This is called the driven reconnection model and is depicted in Fig.
19(b) (Akasofu, 1987). This model is analogous to a dripping faucet (Fig. 20) where "solar wind

plasma seeps into the magnetosphere all along its boundary, accurnulating in the tail until a




17

SOLAR WIND ENERGY TRANSPFORT

oo
7 //////I/[’/// e "7///?7/1//”»7//
Z )

Vg

@

FIG. 19. (a) Schematic of how solar wind energy was thought to be transported to the earth. (b)
Current view of how solar wind energy is thought to get to the earth [Akasofu, 1987].

Corth M Soters '3nd Afser
Mognsrosphore
* Field Lines

FIG. 20. Diagram showing how the magnetosphere’s energy storing and release processes resemble
a faucet drip [Gosling, 1984).
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portion breaks off like a swollen drop of water from a faucet” (Gosling, 1984, p. 33). In this

process, a portion of the stored energy is shed while another portion is directed towards the
earth’s poles. The shedding process has been directly observed in comets but not in the earth’s
magnetotail.

Most of the solar wind's energy, and particles, appears to be stored within the central plasma
sheet of the magnetotail. Observations indicate, however, that plasma sheet energies are in the
keV range while solar wind particles are only in the eV range. That means there must be some
mechanism within the magnetotail which somehow accelerates the low energy solar wind
particles to the higher plasma sheet energies observed. Magnetic field reconnection may be one
possible mechanism. Scientists have predicted that when two anti-parallel field lines of the
magnetotail lobes come into contact, they "explosively” cancel each other out with a resulting
release of energy in the 5 kev range. This energy might be transformed into the high plasma

kinetic energy observed within the central plasma sheet (Tascione, 1988).

Magnetotail Equilibrium/Steady State Condition

As it interacts with the solar wind, the magnetospheric/tail system appears to be trying to
establish an equilibrium when it periodically releases some of its excess energy during magnetic
storms. It seems possible that the magnetospheric/tail system may be trying to reach an
equilibrium state having the lowest total energy. This is the assumption of this thesis and will
be discussed in detail later.

In order to test this assumption, one needs to have measurements of the magnetotail while it
is in a steady-state equilibrium condition. Unfortunately, due to the constant influx of energy
from the solar wind, this condition rarely exists, but it may exist for some special cases. One
case, as mentioned above, may exist for a brief period of time immediately after a magnetic

storm when the magnetotail has released its excess energy. Another case may occur when the
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earth’s magnetic field is exposed to a large northerly component of the IMF for an extended

period of time. When the IMF is pointing northward, the solar wind has minimal interactions
with the earth's magnetic field. By looking at the specific parameters within the magnetotail
system, one may be able to determine whether the system is in a minimum energy equilibrium
state or not. This thesis explores this possibility.

Chapter II of this thesis explains a technique for finding the total minimum energy of a system
not in thermodynamic equilibrium. This chapter discusses how the *Calculus of Variations" is
used to determine which systems of equilibrium states are also minimum energy states.

Chapter Il describes an idealized magnetotail model used in this research and discusses how
the energy minimizing technique described in Chapter II is applied to it. Also, this chapter will
explain what assumptions were used to create the idealized model and why.

Chapter IV addresses the computer program used to solve a series of differential equations
which evolved from the calculus of variations technique. It also describes the model outputs and
any associated graphs and plots.

Chapter V compares the model’s results with real data from the actual earth’s magnetotail. If
the results approximate typical conditions observed in the magnetotail, then we will be able to
say that we will have a working model for describing the earth’s magnetotail energy state while
it is in equilibrium. If, on the other hand, the model does not adequately simulate the
magnetotail’s energy state, then we will have eliminated one possible method for describing the
earth’s magnetotail energy structure.

Chapter VI draws conclusions based upon the results of this research and points out possible

areas for further research.
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Chapter 11

MINIMUM TOTAL ENERGY

Systems in Thermodynamic Equilibrium

If a system is completely isolated from its surroundings, it is in thermodynamic equilibrium.
Determining stable equilibria of systems in these states is done by minimizing the appropriate
potential energy function for that thermodynamic equilibrium. Several potential energy

functions and their specific uses are listed below (Adkins, 1968).

TABLE I. Potential Energy Functions.

Function Description

Enthalpy - can be used for determining the maximum
amount of heat content available within a
given system.

Helmholtz function - can be used for determining the maximum
amount of mechanical work which can be
extracted from a given system.

Gibbs function - can be used for determining the maximum
amount of free energy available within a
given system.

Therefore, in thermodynamic equilibria, minimizing a particular potential energy function

yields a stable equilibrium state.
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Systems Not in Thermodynamic Equilibrium

But what if the system does not remain in thermodynamic equilibrium. Such is the case
where radiation is present (Pippard, 1957). We will assume that these equilibria have minimum
total energy rather than minimum thermodynamic free energy (or potential energy). For such
systems, Qe will attempt to find their stable equilibria by using calculus of variations to
determine their minimum total energy states.

The first step prior to using this technique is to find an equation which adequately describes
the energy of the system in question. The total energy, U, of our system, can be represented by

adding up all of the applicable energy contributions, assuming that there are no dissipation and

advection terms:
Total . . . .
B Kineti Magnetic  Electric Kinetic
of (U) = + Feld + PField + Pressure . 3)
S I‘ Energy Energy Energy Terms

The next step is to identify the constraining equations which apply to the problem. These
include Maxwell’s electrodynamic equations and equations of state for the plasmas in question.

The final step of this technique is to determine which functions appearing in the energy
equations, Eq. (3), within the limits imposed by the constraint equations, yield a minimum total
energy. These functions include variables such as magnetic fields, electric fields, particle
densities, etc., which are dependent upon the independent space variables. One could randomly
insert different functions for each of the dependent variables in Eq. (3), subject to the
appropriate constraints, until the lowest possible value for U was reached. Unfortunately, this

approach is very tedious and time consuming and would not guarantee, with any certainty, that




another combination of values may not generate an even lower value for U. It is due to this
uncertainty that another technique must be used to find the lowest possible value for U, or

minimum total energy. The technique uses the calculus of variations; it works as follows.
Calculus of Variations

Suppose, for example, we want to find the minimum total energy of a given system. Since the
minimum total energy of a system is a special case of the system’s total energy, we will look at
the total energy first without restricting it to being a minimum. To illustrate this method, let us

assume the total energy of the system can be represented as a function of two dependent
variables, A and B = dA/Jz, which are functions of one independent variable z. With this in

mind, we can express the total energy of a given system as,

mamty (U) = [ (A(2LB(2)) . @

In order to find the minimum total energy of the system, we must determine what functions A
and B in Eq. (4) must be in order for U to achieve the lowest value possible. The trick is to
discover, with some degree of certainty, what these functions are. Remember, the values of A
and B may be constrained by one or more external equations as well as boundary conditions that
may be imposed on the system. Therefore, in order to find A(z) and B(z), we must use the
calculus of variations.

To use this technique we first assume that we know what the "correct’ values of A and B are,

and express them as A\, and B ;. Substituting these new variables into Eq. (4) yields




MINIMUM

TOTAL (U) = [ f(AL(z)B(z)z)dz. (5)
ENERGY fot (A -

But how do we determine what the values of A;, and B, are? To find out, we select some
arbitrary functions, a(z) and b(z), multiply them by an infinitesimal dimensionless parameter a,

and add them to A;;, and B,;, to generate two entirely new functions, A’ and B'.

Al(z,a) = A(20)+eaa(z);
B'(z,a) = B(z0)+ab(z). ©

One of the conditions of the calculus of variations is that all values of the 'correct’ functions,
Api, and B, must be the same as those of the new functions, A’ and B, at the systems
boundaries or endpoints. In this case, the endpoints are at the top, z,, and bottom, 2,, of the
system.

Rewriting Eq. (4) using the new functions A'(z,x) and B'(z,a) gives us the following

expression,

gy UCe) = [ f(A(zna), Blza), 2)d. @

By making aa and ab equal zero in Eq. (6), we see that A’ and B’ in Eq. (7) will have the same
values as A;, and B;; in Eq. (5) and the system will be in a minimum total energy state.

We begin the process of minimizing by looking for cases where the derivative of U with
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respect t0 g equals zero. Assuming dU/da is a continuous function, the system will be in an

equilibrium energy state when dU/d & equals zero.

._a..U(g)- v(i£+i£’)d¢zo, 8)

da A’ d« ap! Ju«

Unfortunately, it is impossible to know for certain whether a particular equilibrium coincides
with the system’s minimum total energy state without doing any further tests. The reason for
this is that a system may have many different equilibrium states (Fig. 21).

Another way to insure that an equilibrium state coincides with a system’s minimum total

energy is to take the limit of Eq. (7) as & goes to zero.

lim .
a0V () - a_.ofvf(A’, B, z)d&;

©
= f’_‘bfvf(A“*aa, B+ab z)dz.

We can see as & goes to zero, Eq. (9) begins to look like the minimum total energy equation
(Eq. (5)). Therefore, in order to find the equilibrium state of a system which also coincides with
its minimum total energy (U), we need to apply both the partial differentiation and limit to the

energy equation at the same time as shown in Eq. (10) and Fig. 22.

f;'b[%uu)l-o. (10)
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FIG. 21. Diagram showing that a system can have many equilibrium states (stable and
unstable).
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FIG. 22. Since the value for U( a > 0) will always be greater than U( « = 0 ), we can be
assured that we will find the equilibrium condition with the least possible energy when a goes
to zero.
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Equation (10) must hold independent of the choice of functions a and b in Eq. (9) because as
@ goes to zero, A’ and B’ take on the values of A . and B ; . By taking the limit as @ goes to
zero, however, we eliminate the values of the arbitrary functions, a and b, so how can we vary
them so that we are left only with A' = A . and B’ = B, .? The answer is to use integration

by parts (Goldstein, 1980).
Integration by parts allows one to factor the arbitrary functions, a and b, out of Eq. (6) and

leave only a differential equation within the integral based on the values A’ and B'. Because

B’ = 0A/Jz, the second integral of Eq. (8) is

f(_ fx, o PN/

v a/ 2 m'&zaa g

now we integrate by parts
n X B\, XN s md KX A an
A(a’&aa) aB’aal" Ldz(a’)aa )

Since the correct and arbitrary functions must be equal at the system’s endpoints/boundaries, z;
and z,, the partial derivative of A" with respect to @ in the first part of Eq. (11) will disappear,

leaving us with

of B’ 5 of , A




Therefore,
2ua) - [( X 4 TN,
- [ E-L 5 &y,
or,
2uo) - [P xR ya, a3)
where,
F(z) = ﬁ‘:‘i‘%- a4

We now have an expression F(z) that is written in terms of A’ and B’ only. Since the partial
derivative of A with respect to & can be any arbitrary value, F(z) must be equal to zero in order
to satisfy the condition we made in Eq. (8). Therefore, by solving the differential equation F(z)
= 0 for A’ and B’, we are able to calculate the minimum total energy of the system. F(z) = 0 in
Eq. (14) is called the Euler-Lagrange equation. This thesis will apply this method to an idealized

model of the eaith’s magnetotail and compare the results with real data of the earth’s actual
magnetotail.




Chapter Il

MAGNETOTAIL MODEL
Model Description

The model we use in this thesis to calculate the minimum total energy of the plasma sheet
within the earth’s magnetotail is depicted as a rectangular slab (Fig. 23) of infinite length and
width and a finite height, h. The axes of this model magnetotail are defined by a right-handed
Cartesian system where the positive x-axis, which represents the length of the slab, points
towards the sun. The y-axis, which represents the width of the slab, is directed perpendicular to
the x-axis in the duskward direction. Finally, the z-axis, which represents the height of the slab,
points northward, perpendicular to both the x and y axis.

By using some key assumptions and applying an appropriate set of equilibrium equations to
this magnetotail model, we should be able to calculate its minimum total energy. Comparing

the results of the model’s calculations to certain parameters observed in the plasma sheet of

FIG. 23. Drawing showing the layout of the magnetotail model.




29
the earth’s magnetotail during quiet (steady state) conditions will help determine the validity of

this model.
As mentioned above, several assumptions are used in the model to keep it within the scope of
this thesis. The assumptions used in the model are as follows:

a) System is in a steady-state condition (d/dt = 0).

b) System is in equilibrium.

¢) Particie number densities, ions (“l)' and electrons (n2) vary in the z direction only.
In other words, the particle number densities remain constant within the x-y planes.

d) Ion velocities are restricted to the x-y plane to keep previous assumption true.

e) Only one species of particles (ions or electrons) moves, the other remains stationary,
only ions possess velocity. This assumption is used to simplify calculations within this thesis.

f) The x and y components of the electric field equal zero (E, = Ey = 0). Only the z
component of the electric field has a value which varies only in the z direction (E,(z) = value).
Without this assumption, the ions, within the model, would experience a continuous acceleration
within the infinite x-y planes due to a changing electric field. This condition would eventually
cause the ions to reach an infinite velocity, an unrealistic situation.

g) The y and z components of the magnetic field equal zero (By =B, = 0). Only the x
component of the magnetic field has any value and this value varies only in the z direction
(By(z) = value). The y and z components of the magnetic field are assumed to be zero because
the model is approximating the center of the earth’s magnetotail near the midnight sector. In
this region of the earth’s magnetotail, the magnetic field lines are very nearly parallel to the x
axis with negligible y and z components.

h) Polarization and magnetization of the plasma are assumed to be negligible (M = O,
P = 0).

i) The plasma within the magnetotail model is fully ionized.
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By using these simplifying assumptions, we are left with a very simple or zero order model
which may not include all the necessary details to adequately describe the process observed

within the central plasma sheet of the earth’s magnetotail.

Magnetotail Model’s Total Energy Equation

As stated in Chapter II, we must develop a total energy equation to describe the model system
above which is not in thermodynamic equilibrium. To do this, we must determine what energy
terms we want the total energy equation to have. Since we are attempting to model a region
where electric and magnetic fields are prevalent, it seems logical that the total energy equation
should contain terms describing the energy changes associated with these fields. We also need a
kinetic energy term and an energy term that account for moving plasma particles (ions or
electrons) and kinetic pressures found within the earth’'s magnetotail. Therefore, we want to

develop a total energy equation for the model system that has the following form:

Now we need an expression for each term in the total energy equation shown above. We can
get expressions for the electric and magnetic field energies by combining Poynting’s theorem

with Maxwell’s equations which results in the expression shown in Eq. (15).
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Electric/
Energy Magnetic Power Encrgy
Change . Field Sweagh  +  Per  + Adwcid
Unit Time %:;8% Per Unit Vol Unit Vol
) . BExB
. af( +—)at+f(7 ﬁ)at*fs( o o,
(1s)
where,
y = Total Energy of a System;
g = Electric Field;
g = Magnetic Field;
3 = Electric Current;
€ = Permittivity of Free Space;
Be = Permeability of Free Space;
¢ = Unit Volume;
a = Unit Area.

It is standard practice to define the €gE /2 and B /2;:0 terms in Eq. (15) as electric and
magnetic field energy densities, respectively. These can be used in the total energy equation.
We can also rewrite the energy advection term in Eq. (15) in terms of kinetic energy.

Substituting these expressions into the total energy equation yields:

EField BFed  Kinetic Energics
Encrgy Enetgy Energy Associated
f( Per + P + P + with )ar,
Unit Unit Kinetic
Vol Vol Vol Pressure
2
U ]( £°B ., B, mv? o e,
2, 2

(16)
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where,

Particle Number Density;
= [ons;
n, = Electrons;
Particle Mass;
Particle (Jon/Electron) Velocity;
Adiabatic Constant;
Ratio of Specific Heats.

-]
[

< Qa8

The last term of the total energy equation, Cn¥, which accounts for the kinetic pressure found

within the earth’s magnetotail system, is derived from the Perfect Gas Law.

PV (&"l)(k)('r) = (n)(k)(T);

A

or
m R .
P (V)(E)(T)-

~
"

(n) (k) (T);

where,

Pressure;

Volume;

Universal Gas Constant;
Avogadro’s Number;
Temperature (in degrees Kelvin);
Number Density;

Boltzmann’s Constant.

EoHZP<w
e nnn K

Assuming we have adiabatic conditions, we can say that the internal energy of a system is equal

to the energy extracted from the system by the performance of work (First Law of
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Thermodynamics).

However, the internal energy change for any process for an ideal gas can be rewritten as,

Au = nCvAT;

where ¢, is the heat capacity of a system at a constant volume. In addition, the variable

representing the performance of work can be rewritten as,

w = PAV,

where we assume that the pressure P remains approximately constant, for a very small change in

volume 8V. Substituting these new expressions into the thermodynamic equation yields:

nC, AT = -PAV.

Now we want to write the above equation in terms of temperature and volume only. To do this

we begin with the following form of the perfect gas law,




n C, AT ("5T)Av;
AT _ _ R, AV __G-G AV _ _ _ _,,AV
T FHF e

Integrating the above expression yields:

(T)(V)"'l = Constant ;
(2Y)y(v)r = Constamt;
nR

(PV)(V)™!
(P)(V)Y = Constant;

[ ]
-~
-]
-]
~

but,

R, (m)(T),

Vo= ( :
N, (P)

P
(1)(;;).
(p) °’

= (n);

= (k)
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therefore,

P(V) = Coonstant :
P((n)1)Y = Constant ;
P(n)™" = Constant ;

P

0
g

Por computing purposes, it is easier to deal with dimensionless equations than those with
dimensions. In order to make Eq. (16) dimensionless, we redefine the dependent variables in

such a way that each energy term becomes dimensionless. This has the same effect as setting

m=1;
qQ =1
& = 1;
o = 1.
which gives us the following equation,
Bz Bz nv’ 1
U-Iv(?o-?OTOQ]')dt, an

It is important to note here that the dependent variables in Eq. (17) are dimensionless and are
not the same as the dimensioned variables shown in Eq. (16). It will be shown later in this
thesis that by multiplying the dimensionless variables in Eq. (17) by an appropriate scaling
quantity, we can end up with the dimensioned variables shown in Eq. (16). Therefore, unless

specified, the dependent variables presented in this paper are dimensionless.
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In order to account for the two different particle species, ions (n,), and electrons (n,), we
must apply some of the assumptions discussed earlier in this chapter to Eq. (17). They are as

follows:

= o, (EFldonly has az component);
= o, (BFld onlyhas an x component);
(No vertical velocities);
(Electron velocities are zero).

‘m
N R
°opp

Applying these assumptions to Eq. (17) yields:

+Cn" +Cn,7 ) 3c . (18)

Rewriting Eq. (18) in an expanded form gives us Eq. (19). This new equation represents the
total energy, U, of the model magnetotail system described earlier in this chapter. For the

remainder of this thesis, Eq. (19) will be referred to as the total energy equation.

e ‘o : sz nv!z vz
u - [:I.. - (B'T+T+JT'+EL2L*C1“|'*C;%')3X‘7¥3=- a9

In order to come up with the lowest possible value for the total energy, U, of the model
system, we must first find the minimum values of each of the terms in Eq. (19). Of course one
way to do this would be to arbitrarily set each term in Eq. (19) to zero and make the total

energy, U, of the system equal to zero, but this would depict a very unrealistic situation in the
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real world.

Since we are looking for a minimum total energy of a system in equilibrium, the variables
within Eq. (19) must be governed by one or more equilibrium equations. These equilibrium
equations, in turn, will be constrained to some degree by conditions outside the system.
Therefore, a proper set of boundary conditions must be defined along with the appropriate set of
equilibrium equations. By having the appropriate set of equilibrium equations and boundary

conditions, we will be able to define a range of values (Appendix C) for each term in Eq. (19).

Equilibrium Solutions

Maxwell’s Equilibrium Equations
The equilibrium equations derived from Maxwell’s equations are used to govern/restrict the
electric and magnetic fields defined within the model system. The first of these equilibrium

equations is Gauss’ Law of Electric Charge and is expressed as

Vg -5, B B Pum 20)
ox 9y oz €,

We know the total charge density in Eq. (20) can be written as

. m () (n)+(9)(n) -1, 1)
Puad = g vol 197

Therefore, by substituting Eq. (21) into Eq. (20) and applying the following assumptions,
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X b4

we end up with the following expression:

%,NW, 22)

Eq. (22) provides us with the first equilibrium equation derived from Maxwell’s equations which
governs the model magnetotail’s electric field and particle number densities.
The second equilibrium equation derived from Maxwell’s equations is Faraday’s Law of

Induction and is expressed as

L.
a

= (E-E)x
Yy &

E %
*(-3‘— ax)y

V2. (23)

Using the assumption that the z component of the electric field only varies in the z direction

(E,(z)) and that the model system is in a steady state, we can see that Eq. (23) reduces to
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VxE = 0. 24)

The third equilibrium equation derived from Maxwell’'s equations is Gauss’ Law of Magnetism

and is expressed as

ml
ax

ml

v-B = — = 0, (25)
az

B,
3

which is covered by the assumptions previously mentioned. This equilibrium equation states
that magnetic field lines do not start or stop in space.
The final equilibrium equation derived from Maxwell’s equations is Ampere’s Law and is

expressed as

B B B B B, B
.- (2 _ S (S Ty,
vxB ( YR+ ( )¢ (a 3 )2;

(26)
= uo(j*Vxﬁ-t-eo%ﬁ-%).

Using the assumptions that the y and z components of the magnetic field equal zero (B, = B, =
0), the x component of the magnetic field varies in the z direction only (B,(2)), the polarization
and magnetization aspects of the electric and magnetic currents equal zero (M = P = 0), the
permittivity of free space is dimensionless (i, = 1), and the system is in steady state

(d/dt = 0), we can rewrite Eq. (26) as




aB
%) =T s (P)() = (m-m)(vdevgevd). @7

¥ (

At this point, we use one of the model’s assumptions that electrons (n,) have no velocity.
Normally when considering velocities due to E x B drifts, both the ions and electrons within a
plasma drift. However, results from other works attempting to model the Venus flux ropes
indicate that models, such as the one presented in this paper, may work better by keeping one of
the species of particles stationary (private conversation with Dr. Edwards). With this in mind,

combining like unit vector terms in Eq. (27) yields

v, . (28)

This expression provides us with the second useful equilibrium equation derived from Maxwell’s
equations. This equation governs the model’s magnetic field and ion velocities (or kinetic
energies).

In summary, the equilibrium equations derived from Maxwell's equations are shown below.

4 = 3 - - .
v- B = "
VxB = 0; @9
v-B = 0;
a:
VXB = ; =ﬂIV,.
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The equilibrium equations derived from the force equation are used to govern/restrict the
kinetic energies and number densities of the particles contained within the model magnetotail.

The force equation is expressed as follows:

?sm‘_ 30)

However, since we are dealing with a specific volume, we need to express the force in Eq. (30)

as a force per volume (Eq. (31)).

i. GD

Rewriting Eq. (31) so that t represents the force per volume and p,, represents the mass per

volume, we get

f = P &. (32)

However, we also know

f - Lorentz Force +  Pressure Gradient Rorce
f = p (B+9xB) - B (33)




and,

m (+q)(n)+(-q)(n,) Total number
. — = = N = of particles
P vol vol per unit vol , G9

and the acceleration is given by the convective derivative,

N
i‘s(E'r(V'V)V)- (35)

Applying Egs. (33, 34, and 35) to Eq. (32) yields the following equation(s).

f = (pg)(E);

(Pa)(B+7xB) - (W) =(N) (T +(v-7)7). 36)

But according to Eq. (34), @, =N, therefore Eq. (36) can be written as

(N)(B+9xB)-(W) -(N)(%+(V~V)V). 37

Applying the Perfect Gas Law (P = nkT = CnY) to the pressure gradient force in Eq. (37) yields
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(N)(B+9xB)-(Cy(N)T" V(N))

-(N)(%"-+H-V)v). (38)

Dividing both sides by the total number density (N) yields

(BE+9xB)-(Cy(N)"V(N)) -(gm-vw). (39

Using the assumption that the electric field has only one component z, which varies only in

the z direction, we can say
B - (E)t. (40)

Since we have also assumed the y and z components of the magnetic field equal zero ('By =B,
= 0) and the x component varies only in the z direction (B,(z)), we get the following

equation(s):

¥xB = (vB, -vB )%
+(vB -vB)?
+(le,-v,B‘)2;

= ( -V,B. ) Z. (41)




Since the pressure gradient force only varies in the z direction in this model, we get

(CY(N)T2V(N)) = (Cy(N)"’a(TNl)i. (42)

Looking at the right-hand side of Eq. (42) only, we can derive the following expression

(§+(V-V)V)-(0+(V-V)V) - 0. 43)

Combining Eqs. (39, 40, 41, and 42) into Eq. (38) yields

- - '2M = 44
(E )2 (vyB‘)i (CYy (N)Y 5 )2 0. (44)

Rewriting Eq. (44) so that the change of number density with height is on the left side of the

equation, we are left with the following scalar expression:

9(N) _ 1 2y - 45
~ (g (N)™) (B -vpB,). (45)

Since the values for the ion or electron number density are (transforming to dimensionless

variables)
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N, - = 1 H
[ (+9)(ny) (+1)(ny) 46)
Nopowme = (2)(m) = (-1)(n,);

they can be substituted into Eq. (45), giving us an expression for the change of the ion number

density across the magnetotail from the southern to the northern boundaries.

o(n) _ , L 2 - 47N
= (g (m))(B - vB,).

Note that we have assumed the electron velocities are zero. Using the same steps described

above, we can derive an expression for the change of the electron number density across the tail.

o(m) _ _ L 2y (48)
= (g (2)*T)(B).

Therefore, we have a set of equilibrium equations (Egs. (47) and (48)), derived from the force -
equation, which governs the change of ion and electron number densities across the tail for the

model magnetotail. Summarizing, the force equilibrium equations are

a(y,) 1 2 - .
— (g ()T (B -vB,);

a(n,) ¢ 1 2
5 (Cy(n’).')(n')'

(49)

S
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At this point, we have a set of equilibrium equations which constrain the values of the terms
within the total energy equation (Eq. (19)). We must now specify the boundary conditions.
Additionally, we must add another condition which will prevent the particles (ions and
electrons) contained within the model system from arbitrarily changing species. These

conditions are discussed below.
Boundary Conditions

Equilibrium equations alone will not restrict the value range for each of the terms in the total
energy equation (Eq. (19)). Their values face restrictions on the boundaries of the model
system. Since the model system only has boundaries on the top and bottom, boundary

conditions will only be applicable at these locations.

Number Density Boundary Conditions

For this model, it is assumed that charged particle density (ion or electron) outside the system
is negligible compared to the number densities inside. Therefore, we can see that the particle
number density inside the model must approach zero as one gets closer to the top or bottom
boundaries of the model system. We must have a set of boundary conditions which depict this
situation. Because boundary conditions on n, and nj are not specified, we must establish
boundary conditions on the corresponding Lagrangian multipliers, which will be introduced and

discussed later. These particular conditions are:

A, (0) = 0; A, (h) = 0;
2, (0) = 0; A,(h) = 0.

(50)
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Electric Field Boundary Conditions
Unlike the charged particle number densities, the model assumes there is no electric field
outside the model system. This means that the electric field must equal zero at the boundaries
of the system, which happens to be the top and bottom planes of the model system. The
boundary conditions which restrict the equilibrium equations governing the model’s electric field

are depicted below.

E (0) = 0; E,(h) = 0. (1)

Magnetic Field Boundary Conditions

Unlike the charged particle number densities and the electric field, the model does assume a
substantial magnetic field does exist outside the model system. Therefore, the magnetic field
strength just inside the model’s boundaries must equal whatever magnetic field strength lies just
outside the boundary. The boundary conditions which depict this situation within the model are

as follows:

B, (0) = 0; B,(h) = +B, . (52)

Particle Conservation Equations

These equations are used to ensure the number density of the individual species (ions and
electrons) contained within the model magnetotail remains conserved. So far, we have had
Maxwell’s equations, which only guarantee that the sum total of the charged particles within the
model system will remain conserved (Eq. (22)). In other words, a charged particle (proton or
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electron) will not suddenly appear/disappear within the model system without advection. These

equations ensure that individual particles within the model do not suddenly change species, that
is, a proton becomes an electron or vice versa. Before we derive these particular conservation

equations, we need to define the following variables.

= Total Flux of Charge Particles through the
Surface of a Volume.

= Average Number of Charged Particles per Unit
Volume.

Unit Volume.

Unit Surface Area.

Length of Model Volume.

Width of Model Volume.

Height of Model Volume.

£ ol
N

[

e=gg
i

We want to get an expression that shows the total sum of a particular particle (ion () or
electron (n,)) over a given volume is equal to the average number density (ng) multiplied by

the dimensions of the volume. These expressions are shown in Egs. (53 and 54).

[,(a)dv = [ (n)dr = (n)hlw, (53)

or,

[,(n)dr = [ (5)ds = (m)blw. (549

Taking Eq. (53), let us arbitrarily state

(55)
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where Q is a variable defined by this equation and does not necessarily have any other physical

meaning. Rewriting Eq. (53) in terms of Q gives us the following:

[imras = [ (R)yar;
= L‘(%)lwdz:
= 1w [*(4Q);
=1wlQl;
s f (n)de = 1w[Q(b)-Q(0)]. (56)

Substituting Eq. (53) into Eq. (56) gives us the following:

(g)hlw = 1w[Q(h)-Q(0)];
(ng)k = Q(h)-Q(0). 57

Assuming Q(h) and Q(0) have the same magnitudes, they must have the following values

. L2
Q, (h) =¥

Q.(0) = o. 8

The equations above, when used in conjunction with the other equilibrium equations, ensure

that the particles contained within the model system do not suddenly change species.




Minimizing Model’s Total Energy Equation

We now have a set of differential equations, derived from the appropriate equilibrium
equations, which govern the values of each term within the total energy equation (Eq. (19)). In
order to find which values establish a minimum total energy of the model system, we must solve

these differential equations using the calculus of variations.

Calculus of Variations Calculations

The first thing we must do is adjoin the constraint equations using a set of Lagrangian
multipliers. This is done by multiplying the constraint equations (written in the form 0 = ...) by
a Lagrangian multiplier variable (Eqs. (59 - 64)), and adding the results to the total energy
equation (Eq. (65 - 65¢)). The constraint equations with their corresponding Lagrangian

multipliers are

Ayt - d:;. - 0y, ; (60)
Ay: - % - +C—:;nf"(n,-v,8,); 61)
1,:-%—-—?;—1-&"'(1!,): (62)
Aot - % = (63)
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The modified energy equation is as follows:

1 h B:z sz nlvxz‘_
‘;’“'L”T*T‘ 5 * G’ + Gy ] (64)
dE, (642)
+dg [ +n -]
dB
+Lal[-dz‘+n,v,] (64b)
dn,
+ll[-—d7*c—ﬁn,z"(l!,-v,8,)l (640)
+ -d_nz_—_l_ 2-12
ALl e Cﬂnz 2 ] (64d)
+).Q.[-d:;'+n,])dz
(64¢)

We now have the total energy equation (Eq. (19)) written as a function of a set of energy terms
(E,, By, nq, 0y, Qp, Vy, and Lagrangian multipliers and constants). In order to find the
minimum total energy of the model system, we must find the particular set of values of the
energy terms that, when plugged into the total energy equation (Eq. (19)), yield the lowest
possible value for U.

We start the process by first assuming we know the value of U when the system is in a
minimum total energy state. Then we look for the particular set of values that will give us
assumed value of U. We do this by first expressing the dependent variables (E,, By, ny, no, Q,,

Vy) as a sum of a 'true’ function and a ‘variation’ function. The ‘variation’ function itself is

composed of an arbitrary component multiplied by an infinitesimal dimensionless parameter «.




52
The 'true’ function is defined as having the value required to minimize Eq. (19) while the

‘variation’ function is defined as having any value.

[ Variation Punction ]
Energy _ True . Dimensionless Arbitrary
Term ~  Function U Parameter X Componcnt]
E, - g + [ (a) x (3E,) 1;
B, = B, [ (a) x (8B,) 1;
n, = n, + [ (a) x (8,) 1;
n = n + [ (=) x (8n,) 1;
Q = Q [ (a) x (3Q,) 1
v, = V, § (a) x (8v,) 1.

Expanding Eq. (64 -64e) in this form gives us Eq. (65 - 65¢).

We can see that if we eliminate all the 'variation’ functions from Eq. (65 - 65¢) we would have
the necessary values (Ctrue’ functions) of the energy terms to give us the minimum total energy
or assumed value of U. Unfortunately, the ‘variation’ function can have any value due to its
arbitrary component, so the only way we can eliminate it is to reduce the parameter @ to zero.

We can do this by taking the limit of Eq. (65 - 65¢) as @ goes to zero.

However, since we are looking for a minimum total energy condition of the model system

when it is also in an equilibrium state, we must ensure the resulting expression depicts an
equilibrium condition after we take the limit as @ goes to zero. We saw from Chapter II of this
thesis that an equilibrium condition exists when d/d« equals zero. Therefore, in order to
maintain all the conditions of the model system that we want, we must also take the derivative
of Eq. (65 - 65e), with respect to & at the same time that we take the limit as @ goes to zero.
The results of performing these two mathematical operations yield Eq. (66 - 66e). Notice that

the total energy of the model system is now expressed as a derivative with respect to «
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‘2 [ d(B,;:bB,),(i,+¢an,)(;,+¢av,)]
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(65)

(65a)

(65b)

(65¢)

(65d)

(65¢)
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Cy
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(dU/dq). This expression depicts how much any function varies from the assumed minimum
total energy value, U. When dU/da equals zero, this variance will also be zero. Therefore, if

we can solve Eq. (66 - 66e) so that dU/da equals zero, we will find the values of the energy

terms necessary to depict the minimum total energy state of the model system.

If we now reduce the value of the ‘variation’ function to zero, dU/d & will also become zero,
thereby giving us a minimum total energy condition for the model system.

Taking a closer look at Eq. (66 - 66e) reveals that the value of dU/d« depends on the values
of the arbitrary components (623’ 3B, 3n,: 30, and bQ-) of the ‘variation’ function. This
poses a problem for us because the value of these arbitrary components can be anything.
Therefore, we must somehow separate or factor out these arbitrary components from the rest of

the equation so that we are left with only the part of the equation we need.

Integration by Parts
We use integration by parts to separate the arbitrary components from the rest of the

expression in Eq. (66 - 66¢) as shown here.

Let 3X = Any Arbitrary Component ;

Combined . Separated |
Integral Endpoints + Integral °
_ d(8X) _ _ . d(i)
[r = A(8x) + [222d(8x). 67)

Notice the term outside the integral on the right-hand side of Eq. (67) depicts the endpoints or

boundaries of a given function, j in this case.
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Applying integration by parts to Eq. (66 - 66e) gives us an equation Eq. (68 - 68¢) in which
the energy terms are written in the form as shown in Eq. (67). By doing this, we can solve the
remaining part of the equation to find out what values of the energy terms will give us zero

variance (dU/da = 0).

4 2g ) (68a)
A, 3E, + [ [ ::- 3E, + Agdn, - A dn, ] dz;
2,38, + [* [d(::-)an + AgB,Bv, + Ap¥, 00, 1 dz; (68b)
. f‘ d( A ) . M8, (3K, - %38, - B3v, )
C,y
-y )BT -vB
L(2-v)B (B -8 . 689)
Cyy
« m A5, " T8B,
-4,0n, +f [ - o
_A(247) nzl"anB, (68d)
Gy
d( Aq )
-1q3Q, + [N d:' 8Q, + 80,1 dz . (68e)

Consolidating terms yields:
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1 dU(a) L
Ty ety = - UagdR + g 8B <« d b e A0n, g3,

| vyzbnl
+ [ {[BQE, + B2B, + o+ mV,8Y,

+ Cyy(my) ™30, + Cyy(n) *3n,

o 2on)y dn, - A8
E3E, + Aybn, - dydn,

aQr

(d:')w, + Agn,8V, + 45V 3n,

+

. dg:,) o, + M( D, )Y 3E, - V3B, - BV, )

Cyy
. 4\,(2-1)(11,)"'(6!!,)(5,-‘7,3,)
Cyy
2~
. d(l,)snz_ A(n,)*Y(3E,)
dz Cy
_A(2-7) (1) 8n,) (E,)
Cy
+d(lq‘)

—5 3 + Agdn 1) dz.
69)

It is important to note here that one of the constraints required by the calculus of variations is
that the value of any function, "true® or "variation,” must be the same at any defined endpoints
of boundaries of a given system. Therefore, the first line of Eq. (69) will equal zero. In order
for dU/da to equal zero, the remaining differential equations in Eq. (69) must have the

following forms:
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Wa) | g M) A(m)Y 70
& Cyy Gy
We) g, MmUY 71
dz X CIY ’

ay V¢ 4, M2-v)(2)"(E -VB,)

dz 2 (Cy)(ny)? Cor

The mhYy o 72)

a) | . i, M2-v)(n)"(E)

& (Gy)(n) o Ay : o5
. 0, 74)
dz

in order for dU/da to equal zero. Additionally, the following velocity term must equal

1
v = JM(m)77E 75)
y C,y B,

We now have a set of differential equations represented by Lagrangian multipliers (Eq. (70 -
74)) in addition to Egs. (59 - 63) which, when solved, will provide us with the values of the
energy terms that will minimize the minimum total energy equation (Eq. (19)). The next step is

to solve this set of differential equations to find out what the value of the energy terms E,, B,,

ny, Ny, Q,, and Vy should be in order to make dU/da equal zero in Eq. (69). This is where a

computer program becomes useful.
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CHAPTER IV

MODEL PROGRAM
Program Description

As stated in Chapter III, we now have a set of ordinary differential equations (see Chapter III)
which describe an idealized mode! of the earth’s magnetotail. We want to solve these
differential equations with boundary conditions to find a particular set of values of the energy
terms (E,, By, ny, ny, Q,, and vy) such that when put into the total energy equation (Eq. 19),
they yield the lowest possible value for U. This then becomes the minimum total energy model
for the magnetotail system. Attempting to solve these equations analytically would prove

difficult, if not impossible. Therefore, we must use a computer program to solve these equations.

DVCPR Routine

In order to quickly and efficiently solve the differential equations derived in Chapter IlI, we
have used an IMSL (International Mathematics Science Library) computer routine - DVCPR. The
DVCPR program solves a system of ordinary differential equations with boundary conditions at
two points, by using a variable order, variable step size, finite difference method with deferred
corrections.

As stated above, the boundary conditions for the idealized magnetotail model occur at the top
and bottom surfaces of the rectangular slab. Basically, the DVCPR tries to solve the differential
equations by using the trapezoidal rule over the entire height of the magnetotail model. The
accuracy of the programs calculations increases as the number of step sizes increases. These
step sizes represent uniform horizontal slices within the model. The details of how this program

works are shown in Appendix A.




Dimensional Transformation

We now have a program which will solve the system of dimensionless differential equations
we derived in Chapter IIl. Before we enter these equations into the program, we must ensure
the dimensionless forms of the energy terms relate to each other in the same manner as the
dimensioned terms in Eq. (16) do. We do this with scaling quantities as shown in Eq. (76)

below.

Dimensioned Value = Dimensionless Value x Scaling Quantity . (76)

In order to determine the values of the scaling quantities, we rewrite Eq. (16) and the

constraint equations in the following form:

Energy Equation
2 2 2
m(n)(V,)*(B,)¢%(E.)+(C)(n,). ()
2 2p, 2
(Note: n = nq orny and C = C; or Cy.)
Maxwell’s Equations
3(E) _ a(n) a(m) @8
a(z) & €
and ,
3(B,) 79

= ~peq(n)(v,).
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Force Equations
9(my) _ (m)?7(E -vB) (80)
a(z) (C) Y ’
and ,

a(m) _ (m,)*7(E) (81)
a(z) (G)y

Charge Conservation Equation

2(Q,) (82)
3(z) = q(n ).

The next step is to multiply each of the equations above (Eq. (77 - 82)) by a corresponding

scaling quantity.

Energy Equation
u - m('”")(v""')zz,(B"B“)z,se"(n'la")z«s(cc)(nn,)'. @3
2 21, 2 ‘
Maxwell s Bquations
9(RE) a(myn) qlmn) 84
3(zy) X &
and ,
9(B,B,) (85)

a2z “halnn ) (v,v).




Force Equations
d(oym) (myn )" ((EE)-(vv,)(BB))
a(zz) (GG ]
and ,
a(nn,)  (m,ym )* T (BE)
9(zz) (GG .
Charge Conservation Equation
3(Q Q)
EICE I

In Eqgs. (84 - 88), we can collect all the non-scaled energy terms on the left side of the
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(86)

87

(88)

equation(s) and set them equal to any arbitrary value we want. In this case, we will set them

equal to one. Now we set the remaining constants and scaled quantities on the right side of the

equations equal to the left side of the equations to get the following equations:

Maxwell s Equations

{ = +_&(n._)(1,);
& (K)
| - -_‘1(“")(");
& (E)
ad ,
(n,) (v, ) (g)
(B.) '

1 = “ B4

(89

(90)




Force Equations

(8, )*7(E)
(C,) ’

(v, )(B,)
(C,)

and ,

1 (5, )7 (E,)
1 = *-Y- nz‘(cz.)al. ° 92)

1:4-1
L4

%1

t

p—d
"
~ |v-

Charge Conservation Equation

CRICY
Q)

(93)

We basically perform the same type of operation for the energy equation (Eq. (83)) with a slight
twist. The first thing we do is factor the constants and scaled variables from the first term on
the right side of Eq. (83). We then divide the rest of the terms on the right-hand side of the

equation by the same factor as shown in Eq. (94).

Energy Equation

1
Cmaw? X gm?) (X 3B (BIXZBY)  (catycat)
+ 0 + +
(mmy,?) (mny,’) (may,’) (mny,”)

(54)




But since,

1 2 1,2 1.2
(‘im’y) ) (531) ) (Ezb) . (Cav) ) 1
(m.V,-z) (mn,v,_’) (nm,v,.’) (mv,f) (m.v’.z) (95)
we can say,
2
maw! = %« GBY - Gu'. o6

2y,

At this point we have eight scaling equations (Eqs. (89 - 93, 96)) made up of five constants
(€ Mo Y, €, and m) and seven unknown scaling variables (Ez., Bx., n,, z, Qz', C and vy.). It

is important to note that we are talking about scaling quantities here, not scaled quantities. In
the thesis, "scaling™ quantities are used to generate dimensioned parameters by multiplying them
with a given dimensionless number, and are not to be confused with a "scale” height or length
that represents an interval in which some parameter changes by a factor of e.

Setting one of the unknown scaling variables to a specific value with units (i.e. v, = 3.0 x 108
m/s), we can begin rewriting the remaining unknown scaling variables in terms of constants and
one unknown variable, which we arbitrarily pick to be n. Since we are choosing Vg to be equal
to the speed of light, we will denote it as a constant ¢, from now on.

Therefore, we begin to solve for the values of the scaling quantities by starting with

E = cxB,. (97)




We can see from Eq. (90) that

B, = Yroncim. 98

At this point, we can solve for any of the scaling quantities from Eqs. (89 - 93). We arbitrarily

solve for the scaling height z,, from Eq. (89). Also using Egs. (97) and (98), we see that

) & (E) . &lc(B )] . q,[c(Juon,c’m)] 99)
qn, qn, qn, ]

-1
If we now square Eq. (99) and factorout ¢ = ( 0 € ) 3, Weget

PR p— S (100)

Taking the square root of Eq. (100) yields

z, = L (101)

which is written in terms of constants and one scaling quantity, n,. We are now at a point

where we can rewrite the remaining scaling variables in terms of n,, z,, ¢, and other known

constants. They are as follows:




E = f;(q.z.);

=
]

1
s :(E..);

e(n z):

(102)

o

9 (n?71?%).
o (a7

0
]

We now have all the scaling quantities written in terms of constants and two scaling
quantities, ng and z;. Since the scaling height, z, is also written in terms of the scaling number
density, n, all the scaling quantities are related to each other. Choosing a value for ng will set
the values for the other scaling quantities accordingly. At this point, we are able to use the
dimensionless forms of the energy terms within the minimum total energy program and use

DVCPR routine. The details of the minimum total program are shown in Appendix B.
Model Output

By picking a suitable scaling number density, we can generate appropriate values for the
remaining scaling quantities. Multiplying these scaling quantities by dimensionless numbers
provides the input for the DVCPR program to begin solving the dimensionless differential
equations we derived in Chapter Ill. The program then divides the model’s N-S profile into a
number of segments and comes up with dimensionless values for each of the energy variables for
each segment. These values can then be plotted on a graph to come up witl: dimensionless N-S
profiles of the energy variables. The profiles generated by this program only depict the region
between the bottom surface of the model, or neutral sheet, to the top surface or the plasma

sheet boundary layer. Although the southern half of the central plasma sheet is not depicted in
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this model, the profiles should by symmetrical from north to south for the number densities, ion
velocities, and ion temperatures. Due to the nature of the magnetotail, the electric and magnetic
fields would have asymmetrical profiles.

By setting the dimensionless number density of the model magnetotail to one and setting the
scaling number density to 1.0 X 10° particles per cubic meter (typical value observed within the
central plasma sheet of the earth’s magnetotail), we come up with the following scaling

quantities for the other model energy parameters.

Scaling Quantities

> (1.0 X10° [m3))

-> (228X10° [m])

> (412X10® [V/m])

> (137X10° [1)

> (15 X10M [kg)mY/(A)H])

HF SN P

Next, we multiply these scaling quantities by one to come up with the following model energy

parameters, with units.

Dimensionless
Raw Data = Value X Scaling Quantity
Npaw -> 1.0 X10° [m3 = (10) X (10 X10% [m?))
Zpaw -> 228X 10° [m] = (1.0) X (228X10° [m])
Epaw -> 412X10° [Vvm] =  (1.0) X (412X10° (v/m])
Bpaw -> 1.37X10° [1] = (10) X (137X10° [4)
Craw -> 1.5 X107 [kgm?/A%] = (1.0) X (15 X101 [kgm¥/A%))

These numbers, when entered into the minimum total energy program (Appendix B), generate

integrated numerical data (Appendix C) and a dimensionless N-S profile as shown in Fig. 24.
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Notice that the ion and electron number densities both increase as they get closer to the model
magnetotail’s neutral sheet, which is what we would expect to see in the earth’s magnetotail.
Also note that the magnetic field strength goes to zero at the model magnetotail's neutral sheet--
again what we would expect to see in the earth’s magnetotail.

Figures 25 through 28 show how the dimensionless energy parameters vary as the height of
the model increases from 0.01, a very thin slab, to 95 scaling heights, a thick slab (numerical
data are in Appendix C). It is interesting to note that all the parameter changes occur within
three (6.84 x 10° m) or four scale heights (9.12 x 10° m), no matter how high we make the
profile. In order to ensure the results generated by the minimum energy model are not
inconsistent with the laws of classical physics, we compare the height in which the parameter
changes take place to the Debye length and the Larmor radius of an ion used within the model.

The equations for finding an ion’s Debye length and Larmor radius are

T
Debye Length = = 69.0 (=),
*o L

_ (0 X))

Larmor Radi =
e (q)(B)

Using the numerical data from Appendix C, we see that the ion Debye length is approximately
1542 m while the Larmor radius ranges in value from 2.29 x 10° - 5.62 x 10° m. We can
ignore the Debye length since it is smaller than the Larmor radius. Looking at the Larmor
radius, however, we can see that its values have the same order of magnitude as the height in
which the parameters change in the model profiles. This result shows that the minimum energy

model is not inconsistent with the laws of classical physics.




69

LA SMINL AN S Sumn Sumn Smme Samn )

-
-

Magnetotall Height

Magnetotail Height

Magnetotall Height
“hwarstromio P

(P S S S TN WY VAN VRN N Y

°Smaatqenaao

lon Number Density Magnetic Fleld
Lt rrrrvrrTTeTy T .
10 ot :
ok st 4
£ 8} £ 8¢t 4 =
° >
it £ 7t { 2
= - = K e e =
5.5' 1 g S5t 9 .g
2 4} 4 gA ] %
S af . s 3t 4 S
2 - 2 4
A E R | .
° llllllllllllll ° N S T T S T T I Y
“330288888 288882288848
Electric Field lon Velocity

FIG. 24.- N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE II. Scaling Data Corresponding to Fig. (24).

Number of
Scaling Quantity Scaling Quantities
ng (Number Density) =1.0;
z, (Model Magnetotail Height) =1.0;
E; (Z-component of the Electric Field) = 1.0;
B; (X-component of the Magnetic Field) =1.0;
C; (Magnetotail Adiabatic Constant) = 1.0.
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FIG. 25. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE 1ll. Scaling Data Corresponding to Fig. (25).

Number of
Scaling Quantity Scaling Quantities
n, (Number Density) =1.0;
2, (Model Magnetotail Height) = 0.01 ;
E; (Z-component of the Electric Field) =1.0;
B, (X-component of the Magnetic Field) =1.0;
=10.

C, (Magnetotail Adiabatic Constant)
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FIG. 26. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE IV. Scaling Data Corresponding to Fig. (26).

Scaling Quantity

Number of
Scaling Quantities

n; (Number Density)

z, (Model Magnetotail Height)

E; (Z-component of the Electric Field)
B; (X-component of the Magnetic Field)
C, (Magnetotail Adiabatic Constant)
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FIG. 27. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE V. Scaling Data Corresponding to Fig. (27).

Number of
Scaling Quantity Scaling Quantities
ng (Number Density) = 1.0;
z, (Model Magnetotail Height) = 100;
E; (Z-component of the Electric Field} = 1.0;
B, (X-component of the Magnetic Field) =10;
=10.

C, (Magnetotail Adiabatic Constant)
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FIG. 28. N-S profiles of number densities (n; and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE VI. Scaling Data Corresponding to Fig. (28).

Number of
Scaling Quantity Scaling Quantities
n; (Number Density) =10;
z, (Model Magnetotail Height) = 95.0;
E; (Z-component of the Electric Field) =1.0;
B, (X-component of the Magnetic Field) =1.0;

C, (Magnetotail Adiabatic Constant) =1.0.
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In order to come up with real values that represent typical values of the earth’s magnetotail,

we would have to multiply the scaling quantities by the following dimensionless values.

Npaw
ZRAW
Epaw

Craw

Raw Data

->
->
->

->

1.0 X10° [m?]
2.96 X 10’ [m)

1.5 X10° [V/m]
2.0 X10° 4

6.9 X 10!? [kgm%/A%]

nmnnnn

Dimensionless
Value

(1.0)

(130X 10%)
(3.64X107)
(146X 103)
(459X10°)

X

p¢ D4 D¢ D6

Scaling Quantity

(1.0 X10° [m3?])
(228 X10° [m])
(4.12X10° [V/m])
(1.37X10° (1)

(1.5 X 10 (kgm¥/A% )

Unfortunately, the minimum total energy program is unable to handle these numbers because

the system height (1.30 x 102 scale heights) is much larger than the scaling height z,. However,

by starting with a small height, unity for example, and increasing it until the program can no

longer handle the input values, we can look at the trends in the numerical data (Appendix C)

and profiles (Figs. 29 - 34) and draw conclusions from them.

Remember, the top and bottom values of each of these profiles are constrained by the

following boundary conditions:

A (0)

2,(0)

E, (0)
B, (0)

A (h)
A, (h)
E,(h)
B, (h)
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FIG. 29. N-S profiles of number densities (n; and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE VII. Scaling Data Corresponding to Fig. (29).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
npaw -> 1.0 X10° [m?3) = (10) X (10 x10° [m?))
Zpaw -> 228X10° (m] = (10) X (228X10° [m])
Epaw -> 1.5 X10° [v/m) = (364X10°) X (412X10® [V/m])
Bpaw -> 20 X108 [y = (146X10%) X (137x10° (M)
Cpaw -> 6.9 X109 (kgm¥A%] = (459X10°) X (1.5 X107 (kgm¥/A%))
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FIG. 30. N-S profiles of number densities (n; and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE VIII. Scaling Data Corresponding to Fig. (30).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
npaw -> 1.0 X10° [m3) =  (10) X (10 x10° (m?))
Zpaw -> 4.56X10° [m] = (20) X (228X10° [m))
Epaw -> 1.5 X10° [v/m] = (364X10%) X (412X10® [V/m))
Bpaw -> 2.0 X10°% ) = (146X10%) X (137Xx10° [t])
Cpaw -> 69 X109 (kgm*/A%] = (459X10%) X (15 X107 (kgm¥/A%})
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FIG. 31. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE IX. Scaling Data Corresponding to Fig. (31).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
npaw -> 1.0 X10° [m?) = (10) X (10 X10° [m?)
Zpaw > 6.84X10° [m] = (30) X (228X10° [m])
Epaw -> 1.5 X105 (v/m) = (364X10°) X (412X10° (V/m])
Bpaw -> 20 X10°% [ = (146X10%) X (137X10° [1])
Cpaw -> 6.9 X107 (kgm¥A% = (459%x10%) X (1.5 X107 (kgm¥A%)
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FIG. 32. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE X. Scaling Data Corresponding to Fig. (32).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
Npaw -> 1.0 X10° [m?) = (10) X (10 x10° [m?¥)
Zpaw > 9:12X10° [m] = (40) X (228X10° [m])
Egaw -> 1.5 X105 (v/m] = (364X10%) X (412Xx10° (V/m])
Bpaw -> 2.0 X103 [1] = (146X10%) X (137Xx10° (1)
Cpaw -> 6.9 X107 [kgm¥A%] = (459X10%) X (1.5 X10 (kgm¥A%})
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FIG. 33. N-S profiles of number densities (n; and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE XI. Scaling Data Corresponding to Fig. (33).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
Npaw -> 1.0 X10° [m3) = (10) X (1.0 X10° m?¥))
Zpaw -> 1.14X10° [m] = (50) X (228X10° [m])
Epaw -> 1.5 X10° {v/m) = (364X10°) X (412X10® [V/m])
Bpaw -> 20 X10° (g = (146X10%) X (137X10° [1])
Cpaw -> 6.9 X109 [kgm¥A%] = (459%x10%) X (15 X107 [kgm¥A%))
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FIG. 34. N-S profiles of number densities (n, and n,), x-component of the magnetic field (B,), and
the z-component of the electric field (E,) generated from the minimum total energy program.

TABLE XII. Scaling Data Corresponding to Fig. (34).

Dimensionless Scaling
Dimensioned Parameter = Unit X Quantity
ngaw -> 1.0 X10° [m3) = (10) X (10 X10° [m?¥)
Zpaw -> 2.28X10° [m] = (100) X (228X10° [m])
Epaw -> 1.5 X105 [v/m] = (364X107) X (412X10® (V/m])
Bpaw -> 2.0 X10°% [ = (146X10%) X (137x10° [1])
Cpaw -> 6.9 X107 (kgm¥A%] = (450X105) X (15 X107 [kgm*/A%)
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Comparison of these calculated N-S profiles to those observed in the earth’s magnetotail, as well
as the overall assessment of the energy minimizing technique presented in this thesis, will be

discussed in the next chapter.




CHAPTER V

DATA ANALYSIS
Observed Magnetotail Parameters

The ultimate goal of executing the minimum total energy program (see Appendix 2) is to
come up with values for the ion and electron number densities (n; and ny) and for the electric
(E,) and magnetic (B,) field strengths over the height of the model magnetotail system.

Plotting these on a graph yields N-S profiles of these model parameters. By comparing the
model’s calculated profiles with those obtained from typical values of the earth’s magnetotail, we
should be able to determine how effective the minimum total energy model is at defining a
minimum total energy state of the earth’s magnetotail.

Figure 35 depicts a N-S profile of some key parameters typical of the near earth’s magnetotail
(20 - 30 R,) during solar quiet times and with a southward interplanetary magnetic field (IMF).
In order to compare the profiles in Fig. (35) to the ones generated by the minimum energy
model, we must first linearize the logarithmic scales for the number density, flow speed, and ion
temperatures (Figs. 36 - 38). Since this N-S profile does not change dramatically for a
northward pointing IMF (Lui, 1987), we will assume that the minimum energy model depicts

this situation also.
Comparison to Model Output

At first glance, the model generated profiles do not compare very well to the profiles obtained
from averaged parameters observed in the earth's magnetotail, but there are some similarities.
Looking at the model generated profiles using typical magnetotail values (Figs. 29 - 34), except
for height, and noting that we are only looking at the central plasma sheet region, we can make

some comparisons between the two profiles. Notice that in both profiles, model generated and
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FIG. 36. Number density (n) profile from Fig. (35) using a linear number density scale.
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observed, the ion and electron number densities increase rapidly near the upper edges of the
boundary (plasma sheet boundary layer for the observed profile). The number densities then
increase less rapidly as they approach the center or bottom boundary (neutral sheet) of each
profile. The model differs from the obseived values in that there is no significant increase in the
number densities towards the center of the system (or neutral sheet).

Another similarity occurs in the magnetic field strength profiles. The observed magnetic field
strength appears to lose strength more quickly in the top half of th 2 central plasma sheet (3 - 5
R,) than in the lower half (0 - 3 R,). The same situation occurs in the model magnetotail, but
the magnetic field strength rate changes more rapidly in the upper half of the m Jel and less so
(if at all) in the lower half of the profile. This difference beconies more dramatic with increased
scale height (Figs 33 - 34).

The velocity and temperature trends for both the magnetotail and model profiles also show
some similarities. For instance, both systems have their maximuin velocities at their upper
boundaries, which decrease until they reach their minimum at the lower boundaries. The
temperature trends, on the other hand, show the opposite trend for both systems. Both systems
have their lowest temperatures at the upper boundaries, which increase to 2 maximum at the
lower boundaries.

Finally, both the magnetotail and the model systems both display a degree of diamagnetism.
In other words, both systems have a tendency to try to get rid of the magnetic field energy from
their centers. Looking at the profiles for both systems shows tha. the magnetic energy is at a
minimum near the bottom boundary or center of each system. In the magnetotail system, this
magnetic field energy increases slowly away from the center, then abeut halfway (3 R,) between
the neutral sheet and the plasma sheet boundary layer, the magnetic field strength increases
more rapidly. The same thing happens in the model system, but the rate of magnetic field

energy strength is more d:amatic with increased profile height. The comparisons between the




magnetotail and model systems are summarized in Table XIII.

As mentioned earlier, all the energy parameter changes appear to be confined to the top of all
the N-S profiles as the model system’s height becomes greater than ten scaling heights (z = 10 x
z). It appeafs that any further increases in the profile heights will only stretch the bottom
regions of each profile whose values already remain relatively constant at higher heights. This
phenomenon seems to suggest that the model is depicting a situation where the majority of the

energy changes or acticn takes place within the outer boundaries or sheaths of the region being

Table Xiil. Profile Comparison Summary Between Model and Magnetotail Systems.

Observed

Model

Number density increases rapidly
at the Plasma Sheet Boundary
Layer, less so near the Neutral
Sheet.

Magnetic field strength decreases
quickly near the Plasma Sheet
Boundary Layer, less so near the
Neutral Sheet.

Plasma bulk flow speeds are greatest
near the Plasma Sheet Boundary
Layer, lowest near the Neutral
Sheet.

Ion temperatures are lowest at the
Plasma Sheet Boundary Layer, highest
at the Neutral Sheet.

Magnetic field displays some degree
of diamagnetism.

Height of the top half of the Ceq}ml
Plasma Sheet is about 3.19 X 10’ m.

Number density increases rapidly
at the top boundary, less rapidly
at the bottom boundary.

Magnetic field strength decreases
~uickly near the top boundary,
less so near the bottom boundary.

Ion velocities are greatest near
the top boundary of the model,
lowest near the bottom boundary.

Ion temperatures are lowest at the
top boundary of the model, highest
at the bottom boundary.

Magnetic field displays some
degree of diamagnetism.

Maximum heigha of the model is
about 2.28 X 10° m.




modeled. Closer inspection of the observed energy profiles in Fig. 35 shows similar trends
within or near the Plasma Sheet Boundary Layer just as the model seems to indicate.

There appear to be many reasons to explain the differences observed between the two profiles,
and one of the more obvious may be the geometry of the model system. Although the Central
Plasma Sheet of the earth’s magnetotail can be approximated by a rectangular slab, its height-to-
width proportions are not infinite as depicted by the model system. While making the model’s
length and width dimensions infinite helped keep calculations simple, it did not accurately
portray the magnetotail system.

The boundary éonditions placed on the model system may also have restricted it too much to
accurately depict the magnetotail system. For instance, the model system constrains the z
component of the electric field to be zero at both the bottom and top boundaries. Although this
constraint keeps the model simple, it may not reflect what is actually observed within the
neutral sheet and plasma sheet boundary layer. Some of the boundary conditions may have
been too simple due to some of the assumpu'éns made. For example, the model assumes that
the z component of the magnetic field equals zero at the bottom boundary (or neutral sheet),
which may not be true in the magnetotail. Similar arguments can be made for the other
boundary conditions used in the model.

Another possible reason for the differences observed between the two profiles may be that the
model may have been oversimplified and does not depict actual magnetotail conditions. For
example, the model described in this thesis used only an x component of the magnetic field (no
y component). This was done for two reasons. The first was to simplify the calculations
required for the minimum total energy program. The second reason was that for a first
approximation, the region that the model was trying to depict (the midnight region of the
central plasma sheet) the y component of the magnetic field appeared to be negligible compared

to the x component. We cannot say the same thing about the z component of the magnetic
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field. Because the Central Plasma Sheet is the likely site where anti-parallel magnetic field lines

would connect between the northern and southern tail lobes, the z component of the magnetic
field does exist within the earth’s magnetotail. This z component of the magnetic field would
probably have an appreciable effect on the outcome of the model’s output.

Another model oversimplification was that it only allowed one species of particles, ions, to
move about within the model system. Again, this assumption was used to keep the calculations
for the minimum total energy simple. This assumption may have affected the electron number
density profile. Given the same initial parameters in the computer program, the electron
number density profiles should have looked like the ion number density profiles.

Finally, the model system was assumed to be in a steady-state condition. Observations of the
earth’s magnetotail suggest that it is rarely, if ever, in a steady-state condition. Therefore, we
have a situation where we are trying to compare a steady-state model system to a non steady-
state magnetotail. If it were possible to get some profiles of the earth’s magnetotail parameters
while it experienced a steady-state condition, however briefly, we might see some additional

correlations between the model and actual magnetotail systems.
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CHAPTER V

CONCLUSIONS

Although the minimum total energy model presented in this thesis is able to depict many of
the trends observed within the central plasma sheet of the earth’s magnetotail, it is evident that
it does not have the sufficient detail to depict it accurately. One similarity that the model does
have with the earth’s magnetotail, however, is that almost all of the parameter changes oscur
near the outer or top boundary of the model system. The same thing is true in the earth’s
central plasma sheet in that the greatest parameter changes also occur near the outer boundary
or plasma sheet boundary layer. Another similarity between the model and the earth’s central
plasma sheet is that both systems show diamagnetic qualities. In other words, both systems
show indications of trying to rid their centers of magnetic field energy. 1 -

Therefore, the model seems to suggest that in order for the central plasma sheet in the
magnetotail to reach a minimum total energy state, it must attempt to eliminate as much 'y
from the center of its system as possible. The model demonstrates this fact very well with th;
magnetic field energy. It appears that the model system attempts to reach a minimum totai

energy state by keeping the magnetic field energy to a minimum near the center, and allowing Q
t ' -
its energy to increase near the outer boundary. There is some indication that the earth’s . i

magnetotail system also shows some indication of trying to keep the magnetic field strength near .
N~

the neutral sheet to a minimum. . 5 .
2

These similarities seem to indicate that although the model may be oversimplified in its

present form, it does have a handle on the basic physics governing the energies located wn? .

the central plasma sheet. However, it is also evident that further modifications are stll. ne

to make this minimum total energy model useful.




Areas for Future Studies

One of the first steps to improving this model may be to eliminate or modify some of the
assumptions used, specifically those discussed in Chapter V. Other areas of improvement
include:

a) changing the geometry of the model to better correspond to the shape of the central
plasma sheet located within the earth’s magnetotail.

b) using boundary conditions that more accurately depict conditions observed within
the plasma sheet boundary layer.

¢) adding a z component of the magnetic field into the model system.

d) adding a capability into the model to include a gradient up and down the x-axis of
magnetotail model. In this way, the model would be able to take into account the
processes occurring up and down the magnetotail axis.

e) including additional processes observed within the earth's magnetotail into the
model.

f) comparing model output with profiles generated from the earth’s magnetotail during
northward IMF.

Although this model, in its present form, does not precisely depict the earth’s magnetotail
system, it may represent, to a first approximation, other systems in non-thermodynamic

equilibriums (i.e. radiating systems).
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APPENDIX A: IMSL DVCPR Program Information




PURPOSE

USAGE

ARGUMENTS
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IMSL ROUTINE NAME - DVCPR
(As reproduced from IMSL Library

FORTRAN Subroutines for Mathematics and Statistics)

Solve a system of ordinary differential equations with boundary conditions
at two points, using a variable order, variable step size finite difference
method with deferred corrections.

Call DVCPR (N, FCNI, FCNJ, FCNB, XA, XB, NGMAX, NGRID, IP, IR, TOL, X,
Y, IY, ABT, PAR, WORK, IWORK, IER).

N -

FCNI -

FCNJ -

FCNB -

Number of differential equations (INPUT).

Name of subroutine for evaluating derivatives INPUT). The
subroutine itself must also be provided by the user and it should
be of the following form:

SUBROUTINE FCNI (N, X, Y, YPRIME)
REAL Y(N), YPRIME(N) ...

FCNI should evaluate YPRIME(1) ... YPRIME(N) given N, X, and
Y(1) ... Y(N). YPRIME(D) is the derivative of Y(I) with respect to
X

FCNI must appear in an external statement in the calling program.

Name of the subroutine for evaluating the N by N Jacobian matrix
of partial derivatives (INPUT). The subroutine itself must also be
provided by the user and it should be of the following form:

SUBROUTINE FCNJ (N, X, Y, PD)
REAL Y(N), PD(N, N) ...

FCNJ should evaluate PD(, J) for I, J = 1, N, given N, X, and Y(1)
.. Y(N). PD(], j) is the partial derivative of YPRIME(I) with
respect to Y(J).

FCNJ must appear in an external statement in the calling program.
Name of the subroutine for evaluating the boundary conditions
(INPUT). The subroutine itself must also be provided by the user
and it should be of the following form:

SUBROUTINE FCNB (N, YA, YB, F)
REAL YA(N), YB(N), F(N) ...




XA, XB

NGMAX

NGRID

IP

IR

TOL

ABT

PAR
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FCNB should evaluate F(1) ... F(N) given YA(1) ... YA(N), YB(1) ...
YB(N). YA(I) and YB(I) are the values of Y(I) at XA and XB,
respectively, and the boundary conditions are defined by

F() = 00.0,1 = 1, N. The initial conditions must be defined
first, then the coupled conditions, and then the final conditions.

FCNB must appear in an external statement in the calling
program.

Two points where boundary conditions are given (INPUT). XA
must be less than XB.

Maximum number of grid points to be allowed (INPUT).

Number of points in the input grid (counting endpoints). NGRID
must be greater than 3. On output, NGRID will contain the final
number of grid points (INPUT/OUTPUT).

Number of initial conditions ANPUT). IP must be greater than or
equal to 0 and less than N.

Number of coupled boundary conditions (INPUT). IP + IR must be
greater than O but less than or equal to N.

Relative error control parameter (INPUT). The computations stop
when ABS (ERROR (J, ))/AMAX1 (ABC (Y(J, I), 1.0) is less than
TOL forallJ =1 ..N, I = 1 ... NGRID, where ERROR (J, I) is the
estimated error in Y(J, I).

Vector of length NGMAX containing the final grid. If PAR(4) = 0,
the program initialize X to a uniform mesh of NGRID points.
Otherwise the user must supply the initial grid on input
(INPUT/OUTPUT).

Matrix of dimension N by NGMAX containing the computed
solution on the final grid. Y(J, I) will return an approximation to
the Jth solution component at X(I). If PAR(4) = O, the program
initialize Y to zero. Otherwise the user must supply initial values
for Y AINPUT/OUTPUT).

Row dimension of matrix Y, exactly as specified in the dimension
statement (INPUT). IY must be greater than or equal to N.

Vector of length N containing, in its Jth component, an estimate of
the maximum absolute error over the grid points for the Jth
solution component (OUTPUT).

Options vector of length S (INPUT). If PAR(1) = O the default
options are used and the remaining components are ignored. 1If
PAR(1) = 1, all remaining components of PAR must be given a




WORK -

IWORK -

IER -

value. The default value of PAR(I) in each case is zero.

PAR(2) greater than 0 implies that continuation is to be done for
this highly nonlinear problem. It is assumed that the user has
embedded his problem in a one parameter family

DY/DX = YPRIME (X, Y, EPSNU)

F(Y(A), Y(B), EPSNU) = 0

such that for EPSNU = 0, the problem is simple (e.g. linear), and
for EPSNU = 1, the original problem is recovered. The program
will automatically attempt to go from EPSNU = 0 to EPSNU = 1.
PAR(2) is the starting step in the continuation. The step may be
varied by DVCPR but a lower bound the stepsize of 0.01 is
imposed. The following common block should appear in
subroutines FCNI, FCNJ, and FCNB -

COMMON / C1 / EPSNU, CONT
REAL EPSNU
LOGICAL CONT

If CONT = .TRUE. vectors YPRIME in subroutine FCNI and F in
subroutine FCNB should be defined by

YPRIME(I) = D(YPRIME(1))/D(EPSNU)
F() = DF))/D(EPSNU)

and when CONT = .FALSE., YPRIME and F should have their
normal definitions.

PAR(3) = 1, implies that intermediate output is to be printed (for
debugging purposes).

PAR(4) = 1, implies that initial values for X and Y are supplied by
the user.

PAR(S) = 1, implies that the differential equations and boundary
conditions are linear, and the algorithm should take advantage of
this fact.
Real work vector of length

N*(3*N*NGMAX+4*N+1) +NGMAX*(7*N+2)
Integer work vector of length

2*N*NGMAX+N+NGMAX

Error parameter (OUTPUT).
Terminal error




IER = 129 Illegal values for N, NGRID, IP, or IP.

IER = 130 More than NGMAX grid points are needed to solve
the problem.

IER = 131 Newton’s iteration diverged.

IER = 132 Newton’s iteration reached roundoff error level. If
requested precision is not attained, this means that
TOL is too small.
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APPENDIX B: Minimum Total Energy Program




100
MINIMUM TOTAL ENERGY PROGRAM

REAL Z(1001), K(10, 1001), WORK(384824), ZA, ZB, PAR(S), ABT(3), TOL, U(1001),
ENERGY(1001), VX(1001), ZBR(1001), N1R(1001), N2R(1001), EZR(1001), BYR(1001),
QR(1001)

REAL MRAW, QRAW, NRAW, ZRAW, ERAW, BRAW, CRAW, VLIGHT, EPSILON, MU, NS, ZS, ES,
BS, QS, CS, VS, MQN, BOLT, TRAW

INTEGER IWORK(21031), N, IK, IER, NGMAX, NGRID, 1P, IR
INTEGER I, MRATIO
COMMON/XXX/VAR, C, C1, C2, GAM, G1, G2, ZA, ZB, DENSITY, B0, NO

EXTERNAL FCNI, FCNJ, FCNB

b i dda a2 aa it e i st d it et e st tad it de sl adt il it il sl st dd il e dia il sl st el ittt sl AN

e OPEN DATA FILES **

ba g d s st el e e il et dad s tad it et ettt des st e e at sttt el sttt el st sl gty syl s

OPEN (1, FILE = FILENAME.DAT’, STATUS = 'NEW’) [This part of the program opens files
OPEN (2, FILE = 'PLOT-N1.PLT, STATUS = 'NEW’) storing numerical and plotting data]
OPEN (3, FILE = 'PLOT-N2PLT, STATUS = 'NEW’)
OPEN (4, FILE = 'PLOT-EFLD.PLT’, STATUS = 'NEW’)
OPEN (5, FILE = 'PLOT-BFLD.PLT’, STATUS = 'NEW’)
OPEN (6, FILE = 'PLOT-Q.PLT’, STATUS = 'NEW’)

WERRARRRERARNERNAARARRREERAANAARERAARRAREARAERRAERAEAR NSRS AR d Rt A hdrdddd

wk INPUT INITIAL VALUES (HAVING DIMENSIONS) bl

L e i s ad sttt atedd it dad it el dd it et ettt et alias sl ot st ol d et gt et dygs sy

WRITE (*, *) 'Enter number density (in particles per cubic meter)’ [measured n,
READ (*, *) Npaw or n,}
WRITE (*, *) 'Enter height of magnetotail (in meters)’ [measured z]
READ (%, *) Zp,w

WRITE (*, *) 'Enter z-component of the electric field (in volts per meter)’ [measured E,]
READ (*, *) Ep.w

WRITE (*, *) 'Enter x-component of the magnetic field (in teslas)’ [measured B,]
READ (*, *) Bpaw

WRITE (*, *) 'Enter magnetotail temperature (in degrees Kelvin)’ {measured T]

READ (*, *) Traw
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L 2222222 a2 s el el s et e el Y et et PRt et s i ettt et ezl st d e st s s

bl CONSTANTS **

Thh AR AT AR RN AR R AR AR AR AR AR A AR RN AR AR ARt h A A b hd bbb bbb AR WA b AR A A At

VLIGHT = 3.0X10° [Velocity of Light]

GAM = 5.0/3.0 (Gamma = Ratio of Specific Heats]
EPSILON = 8.85X 1012 [Permittivity of Free Space]

MU = 1.257X 10*;3 [Permeability of Free Space]

BOLT = 1.381 X 10" Boltzmann Constant

Mpaw = 1.67X10% {Mass of Ion in kgs) :

Qraw = 1.602X 101 [Electron Charge)

Craw = (BOLT) * (Tpaw)*MNpaw X 100¢AM)  [Calculated Adiabatic Constant]

AhRRRERAA AR RN AR AR RRANRRNRR A AT RRR AR RR AR AR R TR AT AAA RS R AR AR d AR AT A A A h R b At

** SCALING QUANTITIES **

RARAARRETAAA AN ERR AR A AR TR AR A AR A AR RA AT A AR R RN RN AN A AR AR R AR A A dd

Npaw = Inputted from above [Measured Number Density]

Ng = Npaw ' [{Scaled num den = measured num den]
Zg = Sqrt Mpaw / MU * Npaw * Qraw?))  [Scaled magnetotail ht)

Eg = (Qpaw * N5 * Zg) / (EPSILON) [Scaled E fld strength]

Bg = (Eg) / (VLIGHT) [Scaled B fld strength]}

Qg = (Qpaw *Ng* [Scaled Chg conserve term]

Cs = (VLIGHT?) * leg “GAM) * Mpaw [Scaled adiabatic constant]

Ll e P e e eI a 2R gt e sl el odesd e et a sttt dadodd it datdagdet it dlled dgsgysstslssd

el DIMENSIONLESS VALUES **

P22l et 22 02222l 2t et il s s il siledseatadiasddatsdtdlanddaatdatsddsd i odtetdsdsddad

Zpaw = Inputted from above (measured magnetotail height in meters)

Egaw = Inputted from above (measured electric field in volts per meter)

Braw = Inputted from above (measured magnetic field in teslas)

Craw = Calculated from above (adiabatic constant)

b%) = hﬁuwvl’h%; ﬂ@unlden‘MV'unﬂsl

2o = Zpaw/ Zg [Magnetotail ht w/ units]

By = Bpaw/ Bg B fld w/ units)

Co = Cpaw/ Cg [Adiabatic constant w/ units]
(o = C, [Adiabatic constant for ions]
C = G [Adiabatic constant for electrons])
G, = 1/ (C, * GAM)

1/ (C, * GAM)
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TRARARRR AN AR AN AN ERENAARRA SRR A A AN AN A AN N RN A R A AT AR AN d bR dhd ek hddkddddrd

haad DVCPR ARGUMENT SETUP fall

R a st d i a g it i el sd 2ttt i il la el e s addia i lia el ity lyest)

N = 10 [Number of variables]

Z, = 0 [Height of bottom surface of model]
Zy = 20 [Height of top surface of model]
NGMAX = 1001 [Number of grid points}

NGRID = 100 [Number of horizontal slices in model]
P =5 [Number of initial conditions]

IR =0 [Number of coupled boundary conds]
IK = 10 [Number of output columns]

TOL = 0.01 [Relative error parameter]

PAR(1) =1 [No defaults]

PAR(2) =0

PAR(3) =0 [No printed output for debugging]
PAR(4) =1 [Values for X and Y supplied by user]
PAR(S5) =0 [Diff Eqs. and B.C.s are not linear]

LA s s d it st s et a il ot ed gl il s ittt il adattasd ittt ottt dletiiailssst)y

bl INITIAL GUESS **

b A i d g adada el st ettt sl el i e a2 i et et it el ad el il alded il et leed s g

RMM1 = NGRID -1 [This part of the program divides the
magnetotail into evenly spaced Z(1)

DO 101 = 1, NGRID horizontal planes]

RIM1 =11]-1

Q) = ZA + RIM1/RMM]1 * (ZB - ZA)

K1, D = NO [Estimated ion num density (N) at ht I]

K2, 1) = NO [Estimated electron num density at ht I]

K@3, D =0 [Estimated electric field at ht I]

K4,D = Z(0) * By / Zp) [Estimated magnetic field at ht I]

K@, D =ZM*MNo*Zy) / Zy [Estimated charge conservation at ht I}

K@, D =0 [Lagrangian equiv of n, at htI]

K@, 1) = 0 [Lagrangian equiv of n, at ht I}

| ()] =0 [Lagrangian equiv of E, at ht I]

K@, D) =0 [Lagrangian equiv of B, at ht I]

K(@10,D = 0 [Lagranfian equiv of Q, at ht I]

10 CONTINUE
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Lad g d d e d dad et d i a et i a2 a et it el el e ad eyl YT TITTEEL Y

e CALL THE IMSL SUBROUTINE DVCPR e

Lt g R ad i e st i i addddsad il s et ettt it eta it i ettt es il el yssly

CALL DVCPR (N, FCNI, FCNJ, FCNB, ZA, ZB, NGMAX, NGRID, IP, IR, TOL, Z, K, IK, ABT, PAR,
WORK, IWORK, IER)

IF (IER .GT. 100) GOTO 200

L ddaadd e dd st 2 a et el it et e sl e il il il it es ey e eI es ey

Wk TRANSFORM DIMENSIONLESS VARIABLE TO REAL VALUES **

L e dad it a st et e il el ettt st lgt ettt slet st et sn el ittty sdeyssdy

DO800I = 1, NGRID [Real Value = Dimensionless value

x scaled quantity]
ZgrM = 2(0) *Zg [Yields real magnetotail ht at ht I]
N;r@ = K(1, 1) * Npaw (Yields real ion num density at ht I]
Nopr @ = K(2, 1) * Npaw [Yields real elect num density at ht I}
E;r@ = K@3,D *Eg [Yields real E fld strength at ht I]
ByrM = K@4,1) *Bg [Yields real B fld strength at ht I]
Qr(M = KG,D * Qg
800 CONTINUE

TR AR AR AR AR AR AR AR AR AR AR AR AR R AR R AN AR A A AR AR A A b A b bk d bk h b h ko ddd

W FORMAT THE DVCPR OUTPUT bl

Ladd st i it a st d il et il ed sl e et ed il it T eyl oYYy

Once the system of ordinary differential equations are calculated by this program we want the
out put to be formatted as follows:

Value of Value of Value of Value of Value of

Interval  Z at Ht (I) natHt(@M npatHt@M E,atHt(@  B,atHt (@
YA K@D K@ K@, K@4,0) KG,D
Value of Value of Value of Value of Value of

Interval Q. atHt ) A atHt () A, at He (1) A, at Ht (I) A, at Ht ()
YA U) K@G, D K, K@D K@D K@®]D

(This data can be transferred into a plotting routine in order to make N-S profiles of the
desired parameters).
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a2 2 a2 2222t et el el il sl d sl s et i it et ettt id sttt sl satedsletsdlss]

bl CALCULATING THE MINIMUM TOTAL ENERGY (U) OF THE MAGNETOTAIL ok

bpdal i 22t X2 a il ettt ettt el el et sttt et ol il et el el ittt alets s

DO 141 = 1,NGRID
v,M = [K(6,1) / C; * GAM)] * [K(1, D'°AM) + B, + K(9, D)

or v =-i(n)"'(8)+l.n]

y ClY 1 x 2
u@ = 0.5 *K(1, 1) * [(V,M)?] + 05 * K3, D? + 0.5 * K4, D? + C, * K1, DM +
C; *K(2, DM
2 2 2
or fu(r) = n‘;’ +P§.+E‘2_+cl(n1)1+cz(nz)v]

ENERGY() = U(Q)
WRITE (1, 145) 'Energy at Ht {z(1)] is [ENERGY()Y

SUM =0

DO 1601 = 1, NGRID

SUMNEXT = ENERGY() + SUM

SUM = SUMNEXT

UTOTAL = SUMNEXT
z, 2 2 2

or [ U(TOTAL) = %:{n‘;’ *‘E;—’B:T*Cl(n:)'*cz(‘z)'”

‘A

WRITE (1, 170) 'The minimum value of U with a magnetotail ht of [Zg] is [UTOTAL}’
200 TYPE *, 'Run terminated because IER = [IER]’

END
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LA il a2 2 s s da s i d il ed eyt ed PR A S22 a2 22l ity T ITEeTL L L2 LTIy

e SUBROUTINE FOR CALCULATING THE DIFFERENTIAL EQUATIONS w

RARERRANAA TR TR AN AR AR AR AR AR AR AR AR AR R AR AR AR b bbbk h AR AR A AN b bbb d R b d kb bbb ddd

SUBROUTINE FCNI (N, Z, K, KPRIME)

REAL X, K(N), KPRIME(N), n;, np, E, By, Q,, Ay, Az Ap Ap, Agy v,
INTEGER N

COMMON/XXX/VAR, C, C;, C;, GAM, G,, Gy, Z,, Zp, DENSITY, B, N,

n, = K@)

n, = K@

E, = K@)

B, = K@)

o, = KG)

A = K(6)

A = KO

A, = K®

A = K©)

2, = K(10)

1~y

vy = [+3,%G * (0 ™Mep 0] or [y . 2 (m)T(B) -2

Cyy

KPRIME(1) = [G, * (n, )>GAM)

*[E,-(v,*B,)] or (& |, (m)(E -vB)
axz Cyy
KPRIME(2) = [-G,* (ny)2CAM )+ [E, ] or [i“z_ -M_B'_Z];
Jz Cy
KPRIME3) = [n;-n,] or [% = +(nl-nz)];
KPRIME(4) = [n; *v, ] or [3 = +(nv )1
oz y
KPRIME(S) = [n, ] or[iaa% = +(n )k




KPRIME(6) = [ (-5 *v,2) - (C, * GAM * (n, )°AM1)

+ (2 *G, * (2-GAM) * (q, )M

*(-E, + (v *B)) -2

- (2% v) - Ag

KPRIME(7) = [ -C, * GAM * (n, )AM1 ]

+[A3*Gy* (2-GAM)

t(nz)l-GAMth]

+ Ap

KPRIME(8) = [ E,- A, * G, * (n, )>CAM)

+ [, * G, * (ny )2 0AM

KPRIME(9) = [ B, + A, * G, * (n, )2%AM+ y )

KPRIME(10) = [ 0]
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a, v,

(2. - -1
or [= 2 Cvy(n)?

L AM(2r) ()
Cy

< (-B e vB) -y

- (Agy, ) -4 L

A, _ 4
or [ —2=-Gv(n)

. Ay (2-v)
Gy

x ()7 (E,)

+1&]?

s,

A ()
Cy

LA Dhagt
Gy

or [

A (8,77, ),

g,
or [_&_ =-B+
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R aad L i 222 dd et adad il ettt il adl ettt stiatiesdidiiigttialssddsdsiel sl g

** SUBROUTINE FOR CALCULATING THE JACOBIAN MATRIX e

Laa 2 e a2 2222 a2 ildatd st el il dssedid ettt il entsatdast st it detsdatassettsss )

SUBROUTINE FCNJ (N, Z, K, PD)

REAL Z, KN), PDONN), 0y, 1y, E,, By, Qg0 Ay, Ag, Ag, Ap, A ¥y, %’ %y, &

3, B,
INTEGER N
COMMON/XXX/VAR, C, C,, C,, GAM, G,, Gy, Z,, Zp, DENSITY, By, N,

n, = KQ)
nz = KGD
E, )
B, = K(4)
o, = KE)
A = K(6)
12 = Km
A, = K(8)
Al = KO
A, = K(10)
v, = [+A,* G, *(n, )?CAMs+p _, or = a"(n‘)H(B')— H
Y [(+4,*G; *(ny) x - Ay ] (v, = + o ln,]
DO 3001 = 1,10
DO 310J = 1,10
PDQ, J) = 0.0
310 CONTINUE
300 CONTINUE
* = [+G,* 2 *(1-GAM)] or [ . M -Y)(B),
an, GAM an, Cy(nm)?
*[(1/(n,) ) *B;]
1
% = [1+G,*2,*(n, )M or [ . M),
9B, B, Gy
1
% = [+Gl'(nl)"cm*By] or[fv_l - +M];
dA, oA, Cy

v
—e = -LO —_—Ll = - M
( ] or[a%' (10)1]




PD(1, 1)

PD(1, 3)

PDA], 4)

PD(1, 6)

PD(1, 9)

PD(2, 2)

PD(2, 3)

= [G;*(2-GAM) * (n, )M

* (E,-v,*B,) ]

-[Gy* (n,)2MM+ ( ¥ up y
an,

[ G, * (n, )>CAM;

[ 'Gl * (nl )2-GAM

*(B* X +v,)]

[-G, * (n,)2SAM« (p_+ %y
aA,

[~Gl*(n,)2<“‘"*(a,~ai'u]

As,

[-G,* (2-GAM) * (n, )1GAM

*(E;)]

[.Gzt(nz)2-GAM]
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o[ M (2-YXn)™

Cy
x(B&-vyB‘)
v,
( )z"(—zB,)
- o an, 1
Cy
or[e.'}_ = (n’)z-Y];
OB, Cyy
or [ 3 _ _(my)*
mx CIY
x(B‘)(%)«bv,];
ov,
(n, (B X =L)
or[_ia"_. a - ™ 9%, 1
OA, Cy
v,
(n, (B X —L)
or [ﬂ. = - s, 1;
8).,. Cyy

or[ﬁ - _(2-7)(::,)"'(1!,)];
an, Gr

or [E! - _(n’)z-'];
%, Gy




PD@, 1)

PD@, 2)

PD(4, 1)

PD4, 4)

PD(4, 6)

PD(4, 9

PDG, 1)

[{+1.0]

[-10]

[(nl*;’!)+vy]

[nl*

Bl

[n* 1]
o,

(n,* 1]

[ +1.0]

or

or

or

or

or

or

or

~

#lp BB

= +(10)5)

= -(10) 1

oV,
- (n,x;‘lwv,l:

&

v,
= X))
(n.)(an)

EY
= it Y H
o, - (X))

ov,
= = (X 1))

e,
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D6, = [(v* 20)
an,

PD(6, 3)

PD(6, 4)

1

-(1/G;) * (GAM - 1) * (n, )AM2

+ (G, *2;,*(2-GAM) )

*((1-GAM) * (n, YoM

* (-E, + vy * Bx))

+L1% (G, * (n,)"oAM+ ( ¥y 4 p

*(2-GAM)-(;,‘*;_°;:)1

[-G;*A, *(2-GAM)

* (“1 )I-GAM]

[(-vy‘ _a_vl)
B,

+ (G, * A, * (2-GAM)

t(nl)l‘cmt %*Bx)

o,
*
B, X))

-(a

+ (Gx.u.(ni)mm.vy)]

110

a Ov,
or [a.‘. = -(v, X 1)

an,
-(Cy X y-1Xn,)"?

11(2'7)
 —_——
C,y

x(1-vy¥Xn )™
x(-E +vB,)

oV,
+ll(n1)"'(-é-:)(3,)

ov
x(2-7) - Ap( L
1

or [ . _h(2-vXB)Ty,
o, Ciy
o o,
°rl§i - ""'Xa_nf’
4, (2-v)
P —
Cyy

ov
1 Y
x (0, )" a‘)(B‘)

v
- dg (L)

11(2'7)(“1)"'(",)];
Cy




PD(6, 6)

PD(6, 8)

PD(6, 9)

PD(6, 10)

o

= v, * Y
[Cvy 3 )

A,

+ (G, * A, * (2-GAM)

*(ny )M & 4p

1

-(G; * (2-GAM))

*(ny ) SM* (E, + v, *B,)

[-1.0]

[(v* )
oy,

+ (G * 4, * (2-GAM)

*(nl)l-GAMg 'aa—'vz'*Bx)

-(;,.. _L) vy

[-1.0]

111

a, x
or [ .1 - . L
ax, X5
A (2-7v)
 —_—
Cyy

v,
1-y y
x(mn) (aA,XB‘)

_(2-v)
Cyy

x ()Y -E, + vB,)

o,
- bt AW N
b, ¢ A, )

oA
or [ L = -¢10)];
a (10)

B,
A,
or [ 1 . -(v )(_L)
Oy, Ay,
,(2-v)
> —_—
Cyy

X(n,)"'(%tXB,)

o,
-x,-(a—Bl)-v,]:

or [& = -(10) L
310.




PD(7, 2)

PD(7, 3)

PD(7,7)

PD(7, 8)

[(-1/G,)*(GAM-1)

*(ny)6AM2 4 (,+G,)

*(2-GAM) * (1-GAM)

*(ny,)0AM+E

[Gy*2,*(2-GAM)

* (nz)l-GAM]

[G,* (2-GAM)

*(nz)l-GAM*Ez]

[ +1.0]

112

%,
or [ 2 = -(CyXvy-1)
an,
A
R

x(2-yYyX1-v)

x () (B

2-yXn)tr,,
or [ P2 | M Cﬂ"z L

- "(E),.
or [ P . (2-TXR)NE),
ok, Gy

or [a_x, = +(10)1;
Ody




PD(8, 1)

PD(8, 2)

PD(8, 3)

PD(8, 6)

PD(8, 7)

PD(9.1)

I

[-G;*4,*(2-GAM)

* (nl )I-GAM]

[Gy* A, * (2-GAM)

* (nz )I-GAM]

[-1.0]

( -G, *(ny )2-GAM |

[Gz*(nz)z-GAM]

[Gy* A, * (n, )20AM s ( 3%

+G,* A * (2-GAM)

* (n )"G“M*vy]

L M2y X))
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L Ry X,

Cyy

Gy

ll(n,)"'(iv!)

an‘l;

Gy

L M2 X))

C,y




PD(9, 4)

PD(9, 6)

PD(9, 9)

= [-1+G,*2,*(n, )M

(M

= [Gl*(nl)z-GAM

(M)
a

1

= [G,* 4 *(n, )2+ %

s,

or[aln'-—l#
dB

or[aln'-+

o,
)1'7 it A
A, ( B, )
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1;

Cyy

ov,
e A
, (n, ¥ azl)

oA,

Cyy

L))

or[a)"’-=+
a

Cyy

ov,
A (ny P L)

o,

B,

Cy

];
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PR il 2l e e e s et a e al et s el st ed i il enad st ettt adlesdsssss

wh SUBROUTINE FOR ENTERING BOUNDARY CONDITIONS bl

KRR RARARARARRRRNARAARAREARANRRAR AN RR AR AATAA AR r kb bk dd bbb bbb bbb bbb rhbdd

SUBROUTINE FCNB (N, KA, KB, F)
REAL KA(N), KB(N), F(N)

INTEGER N

COMMON/XXX/VAR, C, C,, C,, GAM, G,, Gy, Z,, Zy, DENSITY, By, N,

F(1) = KA(6) or [BC.atsfcAis A, = 0L

F(2) = KAQ@) or [BC. atsfcAis A, = 0L

F(3) = KAQ) or [BC. atsfcAis E =01

F(4) = KA®4) or [BC.atsfcAis B, = 01;

F(5) = KA(S) or [BC.atsfcAis Q =0

F(6) = KB(6) or [BC.atsfcBis A, = 0L

F(7) = KB(7) or [BC.atsfcBis A, = 0);

F(8) = KB(3) or [BC.atsfcBis B = 01];

F(9) = KB(4) - B, or [BC.atsfcBis B, = + B, JH
F(10) = KB(S) - (N *Zy) or [BC. atsfcBis Q =+ (ng)l

(Note: Surface A is the bottom surface of the model magnetotail which in this particular case
represents the center or neutral sheet of the earth’s magnetotail. Surface B is the top of the
model magnetotail and represents the upper boundary of the earth’s magnetotail.)

RETURN
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Multiplying Scaling Quantities by One.

117

These tables show the calculated values of each energy variable in the minimum total energy

equation. The value of each variable is added to the values calculated from the previous scaling

heigkt.

1. For ny = 1.0; 25 = 1.0; Ez; = 1.0; Bxy = 1.0; G4 = 1.0.

Integrating Energy Parameters from 0.0 to 1.0.

0,0 0O EM

1
5
10
20
30
40
50
60
70
80
9
100

1)

0.00
0.04
0.09
0.19
0.29
0.39
0.50
0.60
0.70
0.80
0.90
1.00

RUOR

2.56
12.81
25.63
51.33
77.21

103.34
129.82
156.72
184.12
212.07
240.57
269.56

1.09
5.44
10.88
21.71
3246
43.06
S3.47
63.62
73.43
82.83
91.70
99.94

1.01
5.03
10.06
20.12
30.16
40.19
50.21
60.20
70.18
80.13
90.07
99.99

0.00
0.01
0.04
0.16
0.35
0.61
0.92
1.25
1.59
1.89
211
2.19

2. For ny = 1.0; z5 = 0.01; Ez; = 1.0; Bxy = 1.0; Gy = 1.0.

nte

A
1

5
10
20
30
40
50
60
70
80
90
100

ting Ene

=0

0.00

0.0004
0.0009
0.0019
0.0029
0.0039
0.0050
0.0060
0.0070
0.0080
0.0090
0.0100

Parameters from 0.0 to 0.01.
D o n,@M E®M
5491 1.11 1.00 0.00

27452 5.53 5.00 0.0001

54866 11.06 10.00 0.0005
109406 22.05 20.00 0.0020
163278 3292 30.00 0.0045
216150 43.58 40.00 0.0077
267703 5397 50.00 0.0115
317633 64.03 60.00 0.0156
365657 73.71 70.00 0.0195
411516 8296 80.00 0.0228
454976 91.72 90.00 0.0252
495832 99.95 100.00 0.0260

:NOR

0.00
0.09
0.42
1.79
4.10
7.38
11.64
16.90
23.17
30.49
38.89
48.37

B, (D

0.00
0.11
0.50
2.11
4.83
8.63
13.50
19.39
26.28
34.13
42.88
52.49

RSUN

0.85
4.27

8.55
17.17
25.95
34.99
44.37
54.19
64.60
75.73
87.77
100.97

99.58
497.91
995.82

1991.44
2987.46
3983.29
4979.12
5974.95
6970.80
7966.65
8962.50
9958.38

1.06
S.30
10.59
21.16
31.66
42.08
52.36
62.48
72.37
81.98
91.23
100.03

1.07
5.36
10.71
21.38
31.96
4241
52.69
62.75
72.55
81.05
91.22
100.02




3. For ny = 1.0; 25 = 0.1; Ez, = 1.0; Bxy = 1.0; G, = 1.0.

Inteprating Energy Parameters from 0.0 to 1.0.

100

4. For ny = 1.0; z5 = 10.0; Ezy = 1.0; Bx, = 1.0; G, = 1.0.

20

0.00

0.004
0.009
0.019
0.029
0.039
0.050
0.060
0.070
0.080
0.090
0.100

0 5,0 0,0 EM
56.90 111 1.00 0.00
284.44 5.53 5.00 0.001
56851 11.06 10.00 0.005
1133.92 2205 20.00 0.020
169296 3291 30.00 0.045
224246 43.57 40.00 0.077
277935 53.96 5000 0.115
3300.67 64.03 60.00 0.155
3803.63 73.71 7000 0.194
428563 8296 80.00 0.228
474431 91.72 9000 0.251
517752 9995 100.00 0.260

Integrating Energy Parameters from 0.0 to 10.0.

A
1
S
10
20
30
40
S0
60
70
80

90
100

20

0.00
0.405
0.911
1.923
2.935
3.947
4.960
5.972
6.984
7.996
9.009
10.021

um

2.03
10.15
20.30
40.61
60.91
81.21

101.52
121.82
142.13
162.50
183.28
206.51

1.01
5.04
10.08
20.16
30.25
40.33
50.41
60.50
70.61
80.75
90.85
99.88

0,0 n,@

1.01
5.04
10.08
20.16
30.24
40.32
$0.40
60.48
70.53
80.53
90.38
99.98

E@

0.00
9.0x10°%
4.4x10°
2.4x10*
8.8x10™*
2.8x10°3
8.6x1073
2.6x102
7.8x102
2.2x107!
5.7x10!
9.5x10!

B, Va,m Tem
0.00 9.94 1.07
0.11 49.71 5.36
050 9943 1071
211 19886 21.37
482 29832 3196
862 397.80 4241
1348 49732 5269
19.36 596.89 62.74
2624 69653  72.55
34.09 79625 82.05
4283 89606 91.22
5244 996.00 100.02
B () V@0 Temp@
0.00 9.6x10° 1.01
9.9x10° 4.9x10* 5.03
47x10* 1.1x10° 1007
25x10° 3.4x10° 20.14
8.5x10° 9.3x10° 3021
2.5x102% 26x102 4028
7.0x102 7.0x102 50.35
1.9x107 1.9x107 60.43
5.3x107 s.2x107 7051
1.46 143 80.62
4.00 3.93 90.70
10.00 11.14  100.05
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5. For ng = 1.0; g = 95.0; Ezy, = 1.0; Bxy = 1.0; C, = 1.0.

te

- .

1
S
10
20
30
40
50
60
70
80
90
100

zM

0.00

3.85

8.67
18.30
27.94
37.57
47.21
56.84
66.47
76.11
85.74
95.37

Energy Parameters from 0.0 to 95.0.

o) n(M EMO  BM

um

2.01
10.03
20.06
40.12
60.18
80.24

100.30
120.36
14042
160.48
180.54
201.24

1.01

5.00
10.01
20.02
30.03
40.04
50.05
60.05
70.06
80.07
90.08
99.81

1.01

5.00
10.01
20.02
30.03
40.04
50.05
60.05
70.06
80.07
90.08
99.97

0.00
4.4x101!
5.8x10'12
8.2x101!

7.7x10'1
9.6x10'1!
1.2x10'1

4.9x10'1!

-7.7x10'1°

-2.0x107
1.0x10°S
9.0x102

0.00
4.1x10'12
2.1x10'!
1.4x10'10
4.7x101°
1.2x10?
2.4x10°?
4.4x10°
8.4x10°
1.1x10°8
1.1x10*
1.66

V@ Temp®

6.4x10°18
4.0x10'12
3.5x10'1%
8.7x10°12
8.3x10'!!
2.5x10°19
5.9x10°1°
1.8x10°
5.5x10¢
3.8x10%
1.1x10*
1.84

1.00
5.01
10.02
20.04
30.06
40.08
$0.12
60.13
70.15
80.17
90.19
100.01
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6.a) Forny = 1.0; zy = 1.0; Ezy = 3.64x10”; Bx, = 1.46x10°%; C, = 4.59x10°.

Typical Magnetotail Values.

Integrating Energy Terms from 0.0 to 1.0.
A =20 u@

1

5

10
20
30
40
50
60
70
80
90

b) For

Ene

0.00
0.04
0.09
0.19
0.29
0.39
0.50
0.60
0.70
0.80
0.90

100 1.00

9.3x10°°
4.6x10*
9.3x10™*
1.9x10°3
2.8x10°3
3.7x10°3
4.6x103
5.6x103
6.5x10°
7.5x103
8.4x1073
9.3x103

U(r)

0,0 nMH E®D

1.00
5.01
10.02
20.04
30.06
40.07
50.08
60.08
70.08
80.07
90.04
99.99

I
- X
0

1.00
5.01
10.02
20.04
30.05
40.07
50.08
60.08
70.07
80.07
90.04
99.99

2
n,vy,
2

Variables’ Percentage of U(I).

+

0.00
7.8x10°°
3.5x107
1.5x10°%
3.5x10%
6.4x10°
1.0x10°
1.5x10°
2.2x10°
3.0x10°
4.1x10°
5.2x10°S

— —

E? B?
2 2 °

120 UM _n\_/raz E22
l() (96)

1

5

10
20
30
40
S0

60
70
80

90

0.00
0.04
0.09
0.19
0.29
0.39
0.50
0.60
0.70
0.80
0.90

100 1.00

The value for the minimum total energy of this model system is 9.33x10°3.

9.29x10°  0.08
4.65x10* 0.08
9.30x10*  0.08
1.86x10°  0.08
279x10°  0.08
3.72x10%  0.09
4.65x10°  0.09
5.59x10°  0.09
6.52x10°  0.10
7.45x10°  0.10
8.39x10° 0.1
9.33x10°  0.12

0.00
1.94x10'12
9.29x10°12
4.12x101!
9.90x10' !
1.88x10°1°
3.19x10'1°
5.04x10'10
7.62x10°10
1.12x10°?

1.63x10”

2.21x107

:NUREER A0
0.00 1.2x103
1.3x10* 6.2x10°
5.6x10%  1.2x102
24x10° 2.5x102
5.5x10°  3.8x102
9.9x10°  5.1x102
1.6x102  6.4x102
2.3x102  7.9x102
3.2x102  9.4x102
42x102 1.1x10!
5.4x102 1.3x107!
6.7x102  1.5x10?!
Cuo," + Cu,'" .
B22  Cn)
(%) (9%6)
0.00 0.50
5.08x10° 0.50
2.41x10° 0.50
1.05x10* 050
2.45x104 0.50
4.48x10* 0.50
7.18x10* 050
1.06x10° 049
1.49x10° 049
2.01x10° 049
2.63x10°  0.49
3.38x10° 0.49

Tem

4.6x10°
2.3x10°*
4.6x10*
9.2x10*
1.4x10°3
1.8x10°3
2.3x10°3
2.8x103
3.2x10°3
3.7x10°3
4.1x10°3
4.6x10°3

Lo’
(%)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.49
0.49
0.49
0.49
0.49
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7.a) Forng = 1.0; z, = 2.0; Ezy = 3.64x10%; Bxy = 1.46x10'3; C, = 4.59x10°5,

Typical Magnetotail Values.

Integrating Energy Terms from 0.0 to 2.0.
Jd oz ud

1

5

10
20
30
40
S0
60
70
80
90

b) For

Ene

0.00
0.08
0.18
0.38
0.59
0.79
0.99
119
140
1.60
1.80

100 2.00

9.2x10°°
4.6x10*
9.2x104
1.8x10°
2.8x10°3
3.7x10°3
4.6x10°3
5.5x10°3
6.5x10°3
7.4x103
8.3x10
9.2x10°3

u(rn)

0 n@M EM

1.00
5.01
10.02
20.03
30.04
40.06
50.07
60.07
70.07
80.06
90.04
99.99

I
- X
0

1.00
5.01
10.02
20.03
30.04
40.06
50.07
60.07
70.07
80.06
90.04
99.99

2
LYy .
2

Variables’ Percentage of UQ).

1 20 um  ;nVv2
o

1
5
10
20
30
40
50
60
70
80
90
100

The value for the minimum total energy of this model system is 9.24x102,

0.00
0.08
0.18
0.38
0.59
0.79
0.99
1.19
1.40
1.60
1.80
2.00

9.29x10°°
4.61x10*
9.22x10°*
1.84x103
2.77x103
3.69x1073
4.61x10°3
5.53x103
6.46x10’3
7.39x103
8.31x103
9.24x103

8.7x10*
8.7x10*
8.8x10*
9.1x10*
9.8x10°*
1.1x10°3
1.2x10°3
1.4x103
1.7x10°3
2.1x10°
2.7x10°3
3.4x103

0.00
1.6x10®
7.4x10°8
3.2x107
7.9x107
1.6x10°¢
2.7x10°
4.6x10°
7.3x10°%
1.1x10°
1.8x10°
2.6x10°

E’ B’

2 2

B2
(%)

0.00

8.63x10'14
4.19x1013
1.99x10'12
5.41x10'12
1.21x10' !
2.53x10' 1!
5.11x10'1!
1.02x10°19
2.05x10°10
4.14x101°
8.05x10°1°

B0 VO
0.00 4.0x10°*
8.1x10° 2.0x103
3.7x10* 4.0x10°
1.6x10° 8.2x10°
3.6x10° 1.3x10%
6.7x10°  1.8x102
1.1x102  2.3x102
1.6x102  3.0x102
2.3x102%  3.8x102
3.2x102 4.8x102
42x102 5.9x102
5.6x102  7.3x102
+CnY + Cn,7 .
2

B2 Ln,Y

(%) (%)
0.00 0.50
2.14x10°% 050
1.02x10°  0.50
4.55x10° 050
1.09x10* 0.50
2.08x10* 0.50
3.52x104 050
5.56x104 0.50
8.42x10* 050
1.24x10°  0.50
1.80x10°  0.50
2.57x10° 050

Tem)

4.6x10°
2.3x10*
4.6x10*
9.2x10*
1.4x10°
1.8x10°3
2.3x10°
2.8x103
3.2x10°3
3.7x103
4.1x10°
4.6x10°3

Ln,”
(%)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
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8.a) Forng = 1.0; 2y = 3.0; Ezy = 3.64x10°%; Bxy = 1.46x10%; C, = 4.59x10°S,

Typical Magnetotail Values.

Integrating Energy Terms from 0.0 to 3.0.
A =z U@

1

5

10
20
30
40
50
60
70
80
2

0.00
0.12
0.27
0.58
0.88
1.18
149
1.79
2.10
240
2.70

100 3.00

b) For

9.2x10°°
4.6x10™*
9.2x10*
1.8x10°
2.8x1073
3.7x103
4.6x103
5.5x103
6.4x103
7.4x10°
8.3x10°
9.2x103

U(r)

0 0, E®@M

1.00
5.01
10.01
20.02
30.03
40.04
50.05
60.06
70.06
80.06
90.04
99.99

I
- X
0

1.00

S.01
10.01
20.02
30.03
40.04
$0.05
60.06
70.06
80.06
90.04
99.99

Ly,
2

Energy Variables' Percentage of U(I).

1 =zm um ‘"“"Z“Lz 2
(%)
1 000 921x10° 1.1x10*
5 012 4.60x10* 1.1x10*
10 027 921x10* 1.2x10*
20 058 1.84x10° 1.3x10*
30 088 276x10° 1.5x10*
40 118 3.68x10° 1.9x10%
50 149 4.60x10° 25x10*
60 179 5.53x10° 3.5x10*
70 209 6.45x10° 5.1x10%4
80 240 7.37x10° 7.9x10%
9 270 830x10° 1.3x103
100 3.00 9.22x10° 2.0x10°

The value for the minimum total energy of this model system is 9.22x1073,

0.00

3.2x10”?
1.5x10°
6.8x10°®
1.8x107
3.9x107
7.9x107
1.5x10°¢
2.8x10°
5.3x10°°
9.8x10%
1.7x10°

E’ B2

2 2

B2
(%)

0.00

3.34x101%
1.67x1014
8.96x10°14
2.94x10'13
8.54x10°13
2.43x10'12
6.94x10°12
2.02x1011
5.96x10™1!
1.79x10°10
5.28x10°10

B0 ya
0.00 1.4x10*
4.4x10°  7.3x10%
2.0x104 1.5x103
8.6x10* 3.1x1073
2.0x10° 4.9x10°3
3.9x10° 7.3x10°
6.5x10°  1.0x102
1.0x102 1.4x102
1.5x102 1.9x102
2.2x10% 2.6x102
3.1x102  3.6x102
4.4x102 4.9x102
+Cn," + Cn' .
B2 o
(%) (%)
0.00 0.50
6.32x107 050
3.04x10° 0.50
1.39x10° 050
3.51x10°  0.50
7.17x10°  0.50
1.33x10* 0.50
2.33x10* 0.50
3.99x10* 0.50
6.74x10*  0.50
1.13x10° 0.50
1.91x10° 0.50
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Temp(l)

4.6x10°°
2.3x10*
4.6x10*
9.2x10*
1.4x10°
1.8x103
2.3x10°3
2.8x10°
3.2x103
3.7x10°3
4.1x10°
4.6x1073

Ln,7
(%)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50




Typical Magnetotail Values.

9.a) Forng = 1.0; 2, = 4.0; Ez; = 3.64x107; Bxy = 1.46x10°3; C; = 4.59x10°.

Integrating Energy Terms from 0.0 to 4.0.

A =z UOh nQ0O nM EM B0 RAON

1 000 92x10° 1.00 100 000 0.00 5.3x10°
5 016 4.6x10* 500 500 58x101° 22x10°5 2.7x10*
10 036 92x10% 1001 1001 27x10° 9.8x10° 5.4x10™
20 0.77 1.8x10° 2002 2002 1.3x10° 4.3x10% 1.2x10°
30 117 2.8x10° 3003 3003 39x10°% 11x10° 2.0x10°
40 158 3.7x10° 4003 4003 9.8x10°% 21x10° 3.1x103
50 198 4.6x10° 5004 5004 2.3x107 3.6x10° 4.8x10°
60 239 5.5x10% 6005 60.05 5.3x107 6.0x10° 7.2x10°°
70 279 6.4x10% 7005 7005 1.2x10° 9.6x10° 1.1x102
80 320 7.4x10° 80.05 8005 27x10° 15x102 1.6x102
90 3.60 83x10° 90.04 9004 6.1x10° 23x10% 2.5x102
100 4.00 9.2x10° 99.99 99.99 1.3x10° 3.5x102 3.7x102

b) For

I 2 2 2
U - ¥ 22 +5;*5;+®.'+&2'-
0 2

Energy Variables’ Percentage of U(1).

1 zn um  nVvEY2 EX2 B%2  cn
(%) (%) (%) (%)

1 000 920x10° 1.5x10° 0.00 0.00 0.50
5 016 4.60x10* 15x10° 1.09x107® 151x107 050
10 036 920x10* 1.6x10° 5.65x10'¢® 7.35x107 0.50
20 077 1.84x10° 1.9x10° 3.56x10% 350x10° 0.50
30 117 276x10°% 25x10° 1.51x10* 9.47x10° o0.50
40 158 3.68x10° 3.7x10° 6.07x10* 213x10° 0.50
50 198 4.60x10° 6.0x10° 249x1071% 443x10° 050
60 239 552x10° 1.0x10% 1.05x107'2 8.96x10° 0.50
70 279 6.44x10° 20x10* 4.56x107'2 1.80x10* 0.50
80 320 7.36x10° 3.8x10% 201x10'! 3.60x10* 050
90 3.60 829x10° 7.5x104 9.04x101! 727x10% 0.50
100 400 9.22x107 1.5x10% 4.15x101° 148x10° 0.50

The value for the minimum total energy of this model system is 9.22x10°3,

Tem

4.6x10°°
2.3x10*
4.6x10
9.2x10™*
1.4x10°3
1.8x10°3
2.3x10°3
2.8x10°3
3.2x10°3
3.7x10°
4.1x10°3
4.6x10°3

Ln,"
(%)

0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
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Typical Magnetotail Values.

10. a) For ny = 1.0; z, = 5.0; Ezy = 3.64x10°%; Bx, = 1.46x10'3; Co = 4.59x10°5.

Integrating Energy Terms from 0.0 to S.0.

1z U0 n@ n0O EM B0 0 VO  Tm

1 000 92x10° 100 100 0.00 0.00 1.9x10°  4.6x10°
5 020 4.6x10* 500 500 97x10'! 99x10°% 9.8x10° 2.3x10*
10 046 92x10* 1001 10.01 4.7x10° 45x10° 2.0x10* 4.6x10*
20 096 1.8x10° 20.02 2002 25x10° 20x104 4.5x104 9.2x10*
30 147 2.8x103 30.03 30.03 84x10° S.1x104 82x10* 1.4x103
40 197 3.7x103 4003 4003 25x10° 1.1x10° 14x10° 1.8x10°
50 248 4.6x10° 50.04 50.04 69x10° 20x10% 23x10% 2.3x10°
60 299 5.5x10° 6005 6005 1.9x107 35x10° 3.9x10° 2.8x10°
70 3.49 6.4x103 70.05 70.05 53x107 6.1x10° 6.5x10° 3.2x10°
80 4.00 7.4x10° 8005 8005 15x10° 1.0x102 1.1x102 3.7x10°
90 450 8.3x103 90.04 90.04 4.0x10° 1.7x10% 1.8x102 4.1x10°
100 5.01 9.2x103% 99.99 9999 1.0x10° 29x102 3.0x102 4.6x10°3

b) For

) ¢ 2 2 2
U(I) = EP%L*E'—’B,T*QII'*QH'.
0 2

Energy Variables’ Percentage of U().

A 20 UM _nq;/zfa_a,?& B2  CnY cCny'
(%) (%) (%) (%) (%)

1 000 920x10° 21x10°® 0.00 0.00 0.50 0.50
5 020 4.60x10* 21x10° 321x101® 3.19x10° 0.50 0.50
10 046 920x10* 22x10° 1.72x10"7 157x107 0.50 0.50
20 096 1.84x10° 2.8x10° 1.33x107% 7.89x107 050 0.50
30 147 276x10° 4.4x10°% 7.64x10'° 2.33x10¢ 0.50 0.50
40 197 3.68x10° 8.0x10° 4.45x10'° 593x10° 050 0.50
50 248 4.60x10° 1.6x10° 2.69x10'* 142x10° 0.50 0.50
60 299 552x10° 36x10° 1.70x10"® 3.39x10° 050 0.50
70 349 6.44x10° 8.4x10° 1.10x107® 813x10° 0.50 0.50
80 399 7.36x10° 20x10* 7.30x10'% 197x10* 0.50 0.50
90 450 828x10° 4.9x10* 4.90x10! 4.84x10* 0.50 0.50
100 5.00 9.21x10° 1.2x10° 3.54x101° 1.20x10° o050 0.50

The value for the minimum total energy of this model system is 9.20x10°3.




11.a) For ng = 1.0; z, = 10.0; Ez, = 3.64x10°7; Bxy = 1.46x103; C; = 4.59x10°5.

Typical Magnetotail Values.

Integrating Energy Terms from 0.0 to 10.0.

Aoz U0 0,0 n@M E®M
1 0.00 9.2x10° 1.00 100 0.00
5 040 4.6x10* 500 5.00 3.8x10!3
10 091 9.2x10* 1001 1001 4.1x103
20 192 1.8x10° 2002 20.02 1.7x101?
30 294 2.8x10° 30.03 30.03 4.7x10}2
40 395 3.7x10° 40.03 40.03 2.0x10!!
50 496 4.6x10° 5004 50.04 2.1x101°
60 597 55x10° 6005 60.05 1.7x107
70 698 6.4x10° 70.05 70.05 1.3x10°
80 8.00 7.4x10° 80.05 80.05 9.6x10°
90 9.00 83x10° 90.04 9004 7.1x107
100 10.02 9.2x10° 99.99 99.99 5.2x10°
b) For
1 2 2 2
vy BB
Uu(r) zo: 3 + 2 2
Energy Variables’ Percentage of U().
1 =z un V%2 EY2
(%) (%)
1 0.00 9.20x10° 9.1x10!! 0.00
5 040 4.60x10* 9.6x10!! 7.88x10%
10 091 9.20x10¢ 1.2x101° 1.91x10%
20 192 1.84x10° 3.4x101° 4.78x102
30 294 276x10° 15x10° 5.72x10°%
40 395 3.68x10° 84x10° 1.54x10%
50 496 4.60x10° 5.1x10° 5.44x10'1
60 597 552x10° 3.2x107 2.69x1077
70 698 6.44x10° 2.1x10° 1.33x10°15
80 800 7.35x10° 14x10° 6.84x1014
90 901 828x10° 9.3x10° 3.91x1012
100 1002 9.20x10° 6.3x10* 2.68x101°

The value for the minimum total energy of this model system is 9.20x10°3.
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B0 V0  Temp®
0.00 1.3x107  4.6x10°5
1.3x107 6.7x107  2.3x10*
6.3x107 1.5x10°  4.6x10%
3.4x10° 4.6x10° 92x10%
1.1x10° 1.3x10°  1.4x103
3.3x10°  3.5x10° 1.8x10°3
9.4x10° 9.6x10° 2.3x103
2.6x104 2.6x10* 2.8x107?
7.2x10% 7.2x10* 3.2x10°3
2.0x10° 20x10° 3.7x10°
5.5x10° 55x10° 4.1x10°3
1.5x102 1.5x102 4.6x103
+Cn, + Cn,7.
B2  CnY'  Cnt
(%) (%) (%)
0.00 0.50 0.50
5.80x1012 0.50 0.50
3.18x10! 050 0.50
2.45x101° 0.50 0.50
1.42x10°  0.50 0.50
826x10° 0.50 0.50
5.03x10% 050 0.50
3.18x107 0.50 0.50
2.07x10° 050 0.50
1.37x10°  0.50 0.50
9.24x10°  0.50 0.50
6.30x10* 0.50 0.50
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